Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Image formation in photosensitive layers on top of highly conductive substrates

Not Accessible

Your library or personal account may give you access

Abstract

The distribution of the average electric energy density defines which part of an exposed photosensitive resist layer is affected by the light beam. The image, which is formed by using optical projection systems, cannot be described by the standard Fresnel-Kirchhoff theory if highly reflective substrates are used. The theory has to take full account of the vectorial character of the light that accomplishes the exposure of the resist. It is shown that, even when objectives with a high numerical aperture are used, the standing wave effects will strongly affect the image. Especially in the region very close to the metal-resist interface, large deviations from scalar diffraction theory have been observed. These conclusions are supported by experimental evidence. The relevance of the theory is discussed by considering the consequences for the realization of microelectronic circuits.

© 1980 Optical Society of America

Full Article  |  PDF Article
More Like This
Correlation image formation with an axicon

E. N. Leith, G. Collins, I. Khoo, and T. Wynn
J. Opt. Soc. Am. 70(2) 141-145 (1980)

Formation of images using fan-beam scanning and noncircular source motion

Franklin S. Weinstein
J. Opt. Soc. Am. 70(8) 931-935 (1980)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (25)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved