Abstract

The damped-least-squares method of optimization is applied to the design of holographic concave gratings for the Seya-Namioka monochromator. The performance of monochromators using such gratings is evaluated in terms of optical transfer function and spot diagram data. The results are compared with those of Noda.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Noda, T. Namioka, and M. Seya, “Design of holographic concave gratings for Seya-Namioka monochromators,” J. Opt. Soc. Am. 64, 1043 (1974).
    [Crossref]
  2. H. Greiner and E. Schäffer, “Zur Seyaschen Theorie des Konkavgitterspektrometers,” Optik 14, 263 (1957).
  3. C. H. F. Velzel, “On the imaging properties of holographic gratings,” J. Opt. Soc. Am. 67, 1021 (1977).
    [Crossref]
  4. J. W. Horwitz, “Ebert spectrometers free of astigmatism and coma,” Opt. Acta 21, 169 (1974).
    [Crossref]
  5. D. P. Feder, “Automatic optical design,” Appl. Opt. 2, 1209 (1963).
    [Crossref]
  6. J. Meiron, “Damped Least-Squares method for automatic lens design,” J. Opt. Soc. Am.,  551105 (1965).
    [Crossref]
  7. H. Noda, T. Namioka, and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64, 1031 (1974).
    [Crossref]
  8. H. Noda, T. Namioka, and M. Seya, “Ray tracing through holographic gratings,” J. Opt. Soc. Am. 64, 1037 (1974).
    [Crossref]
  9. C. G. Wynne and P. M. J. H. Wormell, “Lens design by computer,” Appl. Opt. 2, 1233 (1963).
    [Crossref]
  10. M. Seya, “A new mounting of concave grating suitable for a spectrometer,” Sci Light (Tokyo) 2, 8 (1952).
  11. T. Katayama and A. Takahashi, “Optical transfer function of concave grating spectrometer based on wave optical method,” Jpn. J. Appl. Phys.,  9, 1509 (1970).
    [Crossref]
  12. H. H. Hopkins, “The numerical evaluation of the frequency of optical system,” Proc. Phys. Soc. Lond., B 70, 1002 (1957).
    [Crossref]

1977 (1)

1974 (4)

1970 (1)

T. Katayama and A. Takahashi, “Optical transfer function of concave grating spectrometer based on wave optical method,” Jpn. J. Appl. Phys.,  9, 1509 (1970).
[Crossref]

1965 (1)

1963 (2)

1957 (2)

H. H. Hopkins, “The numerical evaluation of the frequency of optical system,” Proc. Phys. Soc. Lond., B 70, 1002 (1957).
[Crossref]

H. Greiner and E. Schäffer, “Zur Seyaschen Theorie des Konkavgitterspektrometers,” Optik 14, 263 (1957).

1952 (1)

M. Seya, “A new mounting of concave grating suitable for a spectrometer,” Sci Light (Tokyo) 2, 8 (1952).

Feder, D. P.

Greiner, H.

H. Greiner and E. Schäffer, “Zur Seyaschen Theorie des Konkavgitterspektrometers,” Optik 14, 263 (1957).

Hopkins, H. H.

H. H. Hopkins, “The numerical evaluation of the frequency of optical system,” Proc. Phys. Soc. Lond., B 70, 1002 (1957).
[Crossref]

Horwitz, J. W.

J. W. Horwitz, “Ebert spectrometers free of astigmatism and coma,” Opt. Acta 21, 169 (1974).
[Crossref]

Katayama, T.

T. Katayama and A. Takahashi, “Optical transfer function of concave grating spectrometer based on wave optical method,” Jpn. J. Appl. Phys.,  9, 1509 (1970).
[Crossref]

Meiron, J.

Namioka, T.

Noda, H.

Schäffer, E.

H. Greiner and E. Schäffer, “Zur Seyaschen Theorie des Konkavgitterspektrometers,” Optik 14, 263 (1957).

Seya, M.

Takahashi, A.

T. Katayama and A. Takahashi, “Optical transfer function of concave grating spectrometer based on wave optical method,” Jpn. J. Appl. Phys.,  9, 1509 (1970).
[Crossref]

Velzel, C. H. F.

Wormell, P. M. J. H.

Wynne, C. G.

Appl. Opt. (2)

J. Opt. Soc. Am. (5)

Jpn. J. Appl. Phys. (1)

T. Katayama and A. Takahashi, “Optical transfer function of concave grating spectrometer based on wave optical method,” Jpn. J. Appl. Phys.,  9, 1509 (1970).
[Crossref]

Opt. Acta (1)

J. W. Horwitz, “Ebert spectrometers free of astigmatism and coma,” Opt. Acta 21, 169 (1974).
[Crossref]

Optik (1)

H. Greiner and E. Schäffer, “Zur Seyaschen Theorie des Konkavgitterspektrometers,” Optik 14, 263 (1957).

Proc. Phys. Soc. Lond., B (1)

H. H. Hopkins, “The numerical evaluation of the frequency of optical system,” Proc. Phys. Soc. Lond., B 70, 1002 (1957).
[Crossref]

Sci Light (Tokyo) (1)

M. Seya, “A new mounting of concave grating suitable for a spectrometer,” Sci Light (Tokyo) 2, 8 (1952).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

FIG. 1
FIG. 1

Schematic diagram of a holographic monochromator.

FIG. 2
FIG. 2

Merit functions in the successive iterations of automatic design started from the initial design parameters of D1 (—) and D2 (—). (a) For the correction of aberrations of coma type; (b) for the correction of aberrations of astigmatism.

FIG. 3
FIG. 3

OTF’s of the automatically designed holographic gratings. (a) For the correction of coma type; (b) for the correction of astigmatism. Lines A represent the results for the final design parameters of No. 2 or No. 4 in Table II, lines B show the results for the modified method, lines C the results with a mechanically ruled concave grating, and lines D the results with an uncorrected holographic grating.

FIG. 4
FIG. 4

The spot diagrams of the monochromators with different types of grating: (a) minimized in the horizontal direction with the parameters No. 1; (b) minimized in all directions with the parameters No. 3; (c) for the mechanically ruled concave grating.

Tables (2)

Tables Icon

TABLE I The mounting parameters and the initial design parameters D1 and D2.

Tables Icon

TABLE II The final recording parameters determined by the D.L.S. method and by the modified method.