Abstract

Previous studies of the effects of color on the accommodation response are reviewed. The monocular, steady-state response to targets under various colors of illumination is investigated. It is shown that trained observers change their level of accommodation, when viewing a target at a constant distance, to compensate for the varying ocular longitudinal chromatic aberration as the color of the target is changed. Untrained subjects, however, may initially show inconsistent responses. Results in white and green are closely comparable. Dynamic aspects of these effects are illustrated and it is shown that the ocular longitudinal chromatic aberration increases slightly with accommodation. The results are related to current ideas on the accommodative system.

© 1978 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Fincham, “The accommodation reflex and its stimulus,” Brit. J. Ophthal. 35, 381–393 (1951).
  2. A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophtalmol. Paris 35, 401–563 (1923).
  3. H. D. Crane, “A theoretical analysis of the visual accommodation system in humans,” Stanford Res. Inst. Project 5454 NASA CR-606 (1966) (unpublished).
  4. E. F. Fincham, “Defects of the colour-sense mechanism as indicated by the accommodation reflex,” J. Physiol. London 121, 570–580 (1953).
  5. G. G. Heath, “Accommodative responses of totally colour-blind observers,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 457–465 (1956).
    [PubMed]
  6. F. W. Campbell, “The minimum quantity of light required to elicit the accommodation reflex in man,” J. Physiol. London 123, 357–366 (1954).
  7. C. A. Johnson, “Effects of luminance and stimulus distance on accommodation and visual resolution,” J. Opt. Soc. Am. 66, 138–142 (1976).
    [CrossRef] [PubMed]
  8. G. G. Heath, “The influence of visual acuity on the accommodative responses of the eye,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 513–524 (1956).
    [CrossRef] [PubMed]
  9. A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitz. preuss. Akad. Wiss. 30, 577–598 (1894).
  10. G. Wald, “Blue blindness in the normal fovea,” J. Opt. Soc. Am. 57, 1289–1301 (1967).
    [CrossRef] [PubMed]
  11. F. W. Campbell and G. Westheimer, “Factors influencing accommodation responses of the human eye,” J. Opt. Soc. Am. 49, 568–571 (1959).
    [CrossRef] [PubMed]
  12. A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
    [CrossRef] [PubMed]
  13. G. J. Van Der Wildt, M. A. Bouman, and J. Van De Kraats, “The effect of anticipation on the transfer function of the human lens system,” Opt. Acta 21, 843–860 (1974).
    [CrossRef]
  14. A. Ivanoff, Les aberrations-de l’oeil (Editions Rev. d’Optique, Paris, 1953).
  15. G. A. Fry, Blur of the Retinal Image (Ohio State University Press, Columbus, 1955).
  16. R. T. Hennessy, T. Iida, K. Shiina, and H. W. Leibowitz, “The effect of pupil size on accommodation,” Vision Res. 16, 587–589 (1976).
    [CrossRef] [PubMed]
  17. F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. London 145, 479–494 (1959).
  18. A. Arnulf and O. Dupuy, “Contribution à l’étude des microfluctuations d’accommodation de l’oeil,” Rev. Opt. 39, 195–208 (1960).
  19. M. Alpern, “Variability of accommodation during steady fixation at various levels of illuminance,” J. Opt. Soc. Am. 48, 193–197 (1958).
    [CrossRef] [PubMed]
  20. F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
    [CrossRef]
  21. Y. Le Grand, Form and Space Vision, translated by M. Millodot and G. G. Heath (Indiana U. P., Bloomington, 1967).
  22. J. M. Otero, “Influence of the state of accommodation on the visual performance of the human eye,” J. Opt. Soc. Am. 41, 942–948 (1951).
    [CrossRef] [PubMed]
  23. H. A. W. Schober, “Über die Akkommodations ruhelage,” Optik 11, 282–290 (1954).
  24. M. W. Morgan, “The resting state of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 34, 347–353 (1957).
    [CrossRef] [PubMed]
  25. F. M. Toates, “Accommodation function of the human eye,” Physiol. Rev. 52, 828–863 (1972).
  26. G. Westheimer and S. M. Blair, “Accommodation of the eye during sleep and anaesthesia,” Vision Res. 13, 1035–1040 (1973).
    [CrossRef] [PubMed]
  27. H. W. Leibowitz and D. A. Owens, “Anomalous myopias and the intermediate dark-focus of accommodation,” Science 189, 646–648 (1975).
    [CrossRef] [PubMed]
  28. R. T. Hennessy, “Instrument myopia,” J. Opt. Soc. Am. 65, 1114–1120 (1975).
    [CrossRef] [PubMed]
  29. H. W. Leibowitz and D. A. Owens, “Night myopia and the intermediate dark focus of accommodation,” J. Opt. Soc. Am. 65, 1121–1128 (1975).
    [CrossRef] [PubMed]
  30. M. Millodot and J. G. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Brit. J. Physiol. Opt. 28, 169–174 (1973).
    [PubMed]
  31. T. C. A. Jenkins, “Aberrations of the eye and their effects upon vision, Pt. II,” Brit. J. Physiol. Opt. 20, 161–201 (1963).
  32. P. G. Nutting, “The axial chromatic aberration of the human eye,” Proc. R. Soc. London Ser. A 90, 440–443 (1914).
    [CrossRef]
  33. J. G. Sivak and M. Millodot, “Axial chromatic aberration of the eye with an achromatizing lens,” J. Opt. Soc. Am. 64, 1724–1725 (1974).
    [CrossRef]
  34. G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–326 (1947).
    [CrossRef] [PubMed]
  35. R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
    [CrossRef] [PubMed]
  36. W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res. 17, 129–139 (1977).
    [CrossRef] [PubMed]
  37. H. A. Knoll, “Measuring ametropia with a gas laser,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 415–418 (1966).
    [CrossRef] [PubMed]
  38. W. R. Baldwin and W. B. Stover, “Observation of laser standing wave patterns to determine refractive status,” Am. J. Optom. Arch. Am. Acad. Optom. 45, 143–151 (1969).
  39. E. Ingelstam and S. Ragnarsson, “Eye refraction examined by aid of speckle pattern produced by coherent light,” Vision Res. 12, 411–429 (1972).
    [CrossRef] [PubMed]
  40. R. T. Hennessy and H. W. Leibowitz, “Subjective measurement of accommodation with laser light,” J. Opt. Soc. Am. 60, 1700–1701 (1970).
    [CrossRef] [PubMed]
  41. J. A. M. Jennings and W. N. Charman, “A comparison of errors in some methods of subjective refraction,” Ophthalmic Optician 13, 8–18 (1973).
  42. W. N. Charman and G. Heron, “A simple optometer for accommodation studies,” Brit. J. Physiol. Opt. 30, 1–12 (1975).
  43. M. W. Morgan, “Accommodation and its relationship to convergence,” Am. J. Optom. Arch. Am. Acad. Optom. 21, 183–195 (1944).
    [CrossRef]
  44. H. Lowery, R. Hall, and H. Moores, “On dynamic retinoscopy,” Brit. J. Physiol. Opt. 10, 49–55 (1936).
  45. M. C. Nadell and H. A. Knoll, “The effect of luminance, target configuration and lenses upon the refractive state of the eye, Pts. I and II,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 24–42; Am. J. Optom. Arch. Am. Acad. Optom. 33, 86–95 (1956).
  46. W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
    [CrossRef] [PubMed]
  47. R. R. Provine and J. M. Enoch, “On voluntary ocular accomodation,” Percept. Psychophys. 17, 209–212 (1975).
    [CrossRef]
  48. T. N. Cornsweet and H. D. Crane, “Training the visual accommodation system,” Vision Res. 13, 713–715 (1973).
    [CrossRef] [PubMed]
  49. H. E. Roaf, “Visual acuity in light of different colours,” Proc. R. Soc. London Ser. B 106, 276–292 (1930).
    [CrossRef]
  50. A. Arnulf and F. Flamant, “Limites de résolution de l’oeil en lumière monochromatiques et applications à la vision instrumentale,” C. R. Acad. Sci. 230, 1791–1793 (1950).
  51. D. C. Sinclair, “Demonstration of chromatic aberration in the eye using coherent light,” J. Opt. Soc. Am. 55, 575–576 (1965).
    [CrossRef] [PubMed]

1977 (1)

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res. 17, 129–139 (1977).
[CrossRef] [PubMed]

1976 (3)

C. A. Johnson, “Effects of luminance and stimulus distance on accommodation and visual resolution,” J. Opt. Soc. Am. 66, 138–142 (1976).
[CrossRef] [PubMed]

R. T. Hennessy, T. Iida, K. Shiina, and H. W. Leibowitz, “The effect of pupil size on accommodation,” Vision Res. 16, 587–589 (1976).
[CrossRef] [PubMed]

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

1975 (5)

R. R. Provine and J. M. Enoch, “On voluntary ocular accomodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

W. N. Charman and G. Heron, “A simple optometer for accommodation studies,” Brit. J. Physiol. Opt. 30, 1–12 (1975).

H. W. Leibowitz and D. A. Owens, “Anomalous myopias and the intermediate dark-focus of accommodation,” Science 189, 646–648 (1975).
[CrossRef] [PubMed]

R. T. Hennessy, “Instrument myopia,” J. Opt. Soc. Am. 65, 1114–1120 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz and D. A. Owens, “Night myopia and the intermediate dark focus of accommodation,” J. Opt. Soc. Am. 65, 1121–1128 (1975).
[CrossRef] [PubMed]

1974 (2)

G. J. Van Der Wildt, M. A. Bouman, and J. Van De Kraats, “The effect of anticipation on the transfer function of the human lens system,” Opt. Acta 21, 843–860 (1974).
[CrossRef]

J. G. Sivak and M. Millodot, “Axial chromatic aberration of the eye with an achromatizing lens,” J. Opt. Soc. Am. 64, 1724–1725 (1974).
[CrossRef]

1973 (4)

G. Westheimer and S. M. Blair, “Accommodation of the eye during sleep and anaesthesia,” Vision Res. 13, 1035–1040 (1973).
[CrossRef] [PubMed]

M. Millodot and J. G. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Brit. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

J. A. M. Jennings and W. N. Charman, “A comparison of errors in some methods of subjective refraction,” Ophthalmic Optician 13, 8–18 (1973).

T. N. Cornsweet and H. D. Crane, “Training the visual accommodation system,” Vision Res. 13, 713–715 (1973).
[CrossRef] [PubMed]

1972 (2)

F. M. Toates, “Accommodation function of the human eye,” Physiol. Rev. 52, 828–863 (1972).

E. Ingelstam and S. Ragnarsson, “Eye refraction examined by aid of speckle pattern produced by coherent light,” Vision Res. 12, 411–429 (1972).
[CrossRef] [PubMed]

1970 (1)

1969 (1)

W. R. Baldwin and W. B. Stover, “Observation of laser standing wave patterns to determine refractive status,” Am. J. Optom. Arch. Am. Acad. Optom. 45, 143–151 (1969).

1967 (1)

1966 (1)

H. A. Knoll, “Measuring ametropia with a gas laser,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 415–418 (1966).
[CrossRef] [PubMed]

1965 (1)

1964 (1)

A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
[CrossRef] [PubMed]

1963 (1)

T. C. A. Jenkins, “Aberrations of the eye and their effects upon vision, Pt. II,” Brit. J. Physiol. Opt. 20, 161–201 (1963).

1960 (1)

A. Arnulf and O. Dupuy, “Contribution à l’étude des microfluctuations d’accommodation de l’oeil,” Rev. Opt. 39, 195–208 (1960).

1959 (2)

F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. London 145, 479–494 (1959).

F. W. Campbell and G. Westheimer, “Factors influencing accommodation responses of the human eye,” J. Opt. Soc. Am. 49, 568–571 (1959).
[CrossRef] [PubMed]

1958 (1)

1957 (3)

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
[CrossRef]

M. W. Morgan, “The resting state of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 34, 347–353 (1957).
[CrossRef] [PubMed]

R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
[CrossRef] [PubMed]

1956 (2)

G. G. Heath, “The influence of visual acuity on the accommodative responses of the eye,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 513–524 (1956).
[CrossRef] [PubMed]

G. G. Heath, “Accommodative responses of totally colour-blind observers,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 457–465 (1956).
[PubMed]

1954 (2)

F. W. Campbell, “The minimum quantity of light required to elicit the accommodation reflex in man,” J. Physiol. London 123, 357–366 (1954).

H. A. W. Schober, “Über die Akkommodations ruhelage,” Optik 11, 282–290 (1954).

1953 (1)

E. F. Fincham, “Defects of the colour-sense mechanism as indicated by the accommodation reflex,” J. Physiol. London 121, 570–580 (1953).

1951 (2)

1950 (1)

A. Arnulf and F. Flamant, “Limites de résolution de l’oeil en lumière monochromatiques et applications à la vision instrumentale,” C. R. Acad. Sci. 230, 1791–1793 (1950).

1947 (1)

1944 (1)

M. W. Morgan, “Accommodation and its relationship to convergence,” Am. J. Optom. Arch. Am. Acad. Optom. 21, 183–195 (1944).
[CrossRef]

1936 (1)

H. Lowery, R. Hall, and H. Moores, “On dynamic retinoscopy,” Brit. J. Physiol. Opt. 10, 49–55 (1936).

1930 (1)

H. E. Roaf, “Visual acuity in light of different colours,” Proc. R. Soc. London Ser. B 106, 276–292 (1930).
[CrossRef]

1923 (1)

A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophtalmol. Paris 35, 401–563 (1923).

1914 (1)

P. G. Nutting, “The axial chromatic aberration of the human eye,” Proc. R. Soc. London Ser. A 90, 440–443 (1914).
[CrossRef]

1894 (1)

A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitz. preuss. Akad. Wiss. 30, 577–598 (1894).

Alpern, M.

Arnulf, A.

A. Arnulf and O. Dupuy, “Contribution à l’étude des microfluctuations d’accommodation de l’oeil,” Rev. Opt. 39, 195–208 (1960).

A. Arnulf and F. Flamant, “Limites de résolution de l’oeil en lumière monochromatiques et applications à la vision instrumentale,” C. R. Acad. Sci. 230, 1791–1793 (1950).

Baldwin, W. R.

W. R. Baldwin and W. B. Stover, “Observation of laser standing wave patterns to determine refractive status,” Am. J. Optom. Arch. Am. Acad. Optom. 45, 143–151 (1969).

Bedford, R. E.

Blair, S. M.

G. Westheimer and S. M. Blair, “Accommodation of the eye during sleep and anaesthesia,” Vision Res. 13, 1035–1040 (1973).
[CrossRef] [PubMed]

Bouman, M. A.

G. J. Van Der Wildt, M. A. Bouman, and J. Van De Kraats, “The effect of anticipation on the transfer function of the human lens system,” Opt. Acta 21, 843–860 (1974).
[CrossRef]

Campbell, F. W.

F. W. Campbell and G. Westheimer, “Factors influencing accommodation responses of the human eye,” J. Opt. Soc. Am. 49, 568–571 (1959).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. London 145, 479–494 (1959).

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
[CrossRef]

F. W. Campbell, “The minimum quantity of light required to elicit the accommodation reflex in man,” J. Physiol. London 123, 357–366 (1954).

Charman, W. N.

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res. 17, 129–139 (1977).
[CrossRef] [PubMed]

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

W. N. Charman and G. Heron, “A simple optometer for accommodation studies,” Brit. J. Physiol. Opt. 30, 1–12 (1975).

J. A. M. Jennings and W. N. Charman, “A comparison of errors in some methods of subjective refraction,” Ophthalmic Optician 13, 8–18 (1973).

Cornsweet, T. N.

T. N. Cornsweet and H. D. Crane, “Training the visual accommodation system,” Vision Res. 13, 713–715 (1973).
[CrossRef] [PubMed]

Crane, H. D.

T. N. Cornsweet and H. D. Crane, “Training the visual accommodation system,” Vision Res. 13, 713–715 (1973).
[CrossRef] [PubMed]

H. D. Crane, “A theoretical analysis of the visual accommodation system in humans,” Stanford Res. Inst. Project 5454 NASA CR-606 (1966) (unpublished).

Dupuy, O.

A. Arnulf and O. Dupuy, “Contribution à l’étude des microfluctuations d’accommodation de l’oeil,” Rev. Opt. 39, 195–208 (1960).

Enoch, J. M.

R. R. Provine and J. M. Enoch, “On voluntary ocular accomodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

Fincham, E. F.

E. F. Fincham, “Defects of the colour-sense mechanism as indicated by the accommodation reflex,” J. Physiol. London 121, 570–580 (1953).

E. F. Fincham, “The accommodation reflex and its stimulus,” Brit. J. Ophthal. 35, 381–393 (1951).

Flamant, F.

A. Arnulf and F. Flamant, “Limites de résolution de l’oeil en lumière monochromatiques et applications à la vision instrumentale,” C. R. Acad. Sci. 230, 1791–1793 (1950).

Fry, G. A.

G. A. Fry, Blur of the Retinal Image (Ohio State University Press, Columbus, 1955).

Griffin, D. R.

Hall, R.

H. Lowery, R. Hall, and H. Moores, “On dynamic retinoscopy,” Brit. J. Physiol. Opt. 10, 49–55 (1936).

Heath, G. G.

G. G. Heath, “Accommodative responses of totally colour-blind observers,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 457–465 (1956).
[PubMed]

G. G. Heath, “The influence of visual acuity on the accommodative responses of the eye,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 513–524 (1956).
[CrossRef] [PubMed]

Hennessy, R. T.

Heron, G.

W. N. Charman and G. Heron, “A simple optometer for accommodation studies,” Brit. J. Physiol. Opt. 30, 1–12 (1975).

Iida, T.

R. T. Hennessy, T. Iida, K. Shiina, and H. W. Leibowitz, “The effect of pupil size on accommodation,” Vision Res. 16, 587–589 (1976).
[CrossRef] [PubMed]

Ingelstam, E.

E. Ingelstam and S. Ragnarsson, “Eye refraction examined by aid of speckle pattern produced by coherent light,” Vision Res. 12, 411–429 (1972).
[CrossRef] [PubMed]

Ivanoff, A.

A. Ivanoff, Les aberrations-de l’oeil (Editions Rev. d’Optique, Paris, 1953).

Jenkins, T. C. A.

T. C. A. Jenkins, “Aberrations of the eye and their effects upon vision, Pt. II,” Brit. J. Physiol. Opt. 20, 161–201 (1963).

Jennings, J. A. M.

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

J. A. M. Jennings and W. N. Charman, “A comparison of errors in some methods of subjective refraction,” Ophthalmic Optician 13, 8–18 (1973).

Johnson, C. A.

Knoll, H. A.

H. A. Knoll, “Measuring ametropia with a gas laser,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 415–418 (1966).
[CrossRef] [PubMed]

M. C. Nadell and H. A. Knoll, “The effect of luminance, target configuration and lenses upon the refractive state of the eye, Pts. I and II,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 24–42; Am. J. Optom. Arch. Am. Acad. Optom. 33, 86–95 (1956).

König, A.

A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitz. preuss. Akad. Wiss. 30, 577–598 (1894).

Le Grand, Y.

Y. Le Grand, Form and Space Vision, translated by M. Millodot and G. G. Heath (Indiana U. P., Bloomington, 1967).

Leibowitz, H. W.

R. T. Hennessy, T. Iida, K. Shiina, and H. W. Leibowitz, “The effect of pupil size on accommodation,” Vision Res. 16, 587–589 (1976).
[CrossRef] [PubMed]

H. W. Leibowitz and D. A. Owens, “Night myopia and the intermediate dark focus of accommodation,” J. Opt. Soc. Am. 65, 1121–1128 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz and D. A. Owens, “Anomalous myopias and the intermediate dark-focus of accommodation,” Science 189, 646–648 (1975).
[CrossRef] [PubMed]

R. T. Hennessy and H. W. Leibowitz, “Subjective measurement of accommodation with laser light,” J. Opt. Soc. Am. 60, 1700–1701 (1970).
[CrossRef] [PubMed]

Lowery, H.

H. Lowery, R. Hall, and H. Moores, “On dynamic retinoscopy,” Brit. J. Physiol. Opt. 10, 49–55 (1936).

Miller, D.

A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
[CrossRef] [PubMed]

Millodot, M.

J. G. Sivak and M. Millodot, “Axial chromatic aberration of the eye with an achromatizing lens,” J. Opt. Soc. Am. 64, 1724–1725 (1974).
[CrossRef]

M. Millodot and J. G. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Brit. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

Moores, H.

H. Lowery, R. Hall, and H. Moores, “On dynamic retinoscopy,” Brit. J. Physiol. Opt. 10, 49–55 (1936).

Morgan, M. W.

M. W. Morgan, “The resting state of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 34, 347–353 (1957).
[CrossRef] [PubMed]

M. W. Morgan, “Accommodation and its relationship to convergence,” Am. J. Optom. Arch. Am. Acad. Optom. 21, 183–195 (1944).
[CrossRef]

Nadell, M. C.

M. C. Nadell and H. A. Knoll, “The effect of luminance, target configuration and lenses upon the refractive state of the eye, Pts. I and II,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 24–42; Am. J. Optom. Arch. Am. Acad. Optom. 33, 86–95 (1956).

Nutting, P. G.

P. G. Nutting, “The axial chromatic aberration of the human eye,” Proc. R. Soc. London Ser. A 90, 440–443 (1914).
[CrossRef]

Otero, J. M.

Owens, D. A.

H. W. Leibowitz and D. A. Owens, “Anomalous myopias and the intermediate dark-focus of accommodation,” Science 189, 646–648 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz and D. A. Owens, “Night myopia and the intermediate dark focus of accommodation,” J. Opt. Soc. Am. 65, 1121–1128 (1975).
[CrossRef] [PubMed]

Polack, A.

A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophtalmol. Paris 35, 401–563 (1923).

Provine, R. R.

R. R. Provine and J. M. Enoch, “On voluntary ocular accomodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

Ragnarsson, S.

E. Ingelstam and S. Ragnarsson, “Eye refraction examined by aid of speckle pattern produced by coherent light,” Vision Res. 12, 411–429 (1972).
[CrossRef] [PubMed]

Roaf, H. E.

H. E. Roaf, “Visual acuity in light of different colours,” Proc. R. Soc. London Ser. B 106, 276–292 (1930).
[CrossRef]

Robson, J. G.

F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. London 145, 479–494 (1959).

Schober, H. A. W.

H. A. W. Schober, “Über die Akkommodations ruhelage,” Optik 11, 282–290 (1954).

Shiina, K.

R. T. Hennessy, T. Iida, K. Shiina, and H. W. Leibowitz, “The effect of pupil size on accommodation,” Vision Res. 16, 587–589 (1976).
[CrossRef] [PubMed]

Sinclair, D. C.

Sivak, J. G.

J. G. Sivak and M. Millodot, “Axial chromatic aberration of the eye with an achromatizing lens,” J. Opt. Soc. Am. 64, 1724–1725 (1974).
[CrossRef]

M. Millodot and J. G. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Brit. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

Stark, L.

A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
[CrossRef] [PubMed]

Stover, W. B.

W. R. Baldwin and W. B. Stover, “Observation of laser standing wave patterns to determine refractive status,” Am. J. Optom. Arch. Am. Acad. Optom. 45, 143–151 (1969).

Toates, F. M.

F. M. Toates, “Accommodation function of the human eye,” Physiol. Rev. 52, 828–863 (1972).

Troelstra, A.

A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
[CrossRef] [PubMed]

Tucker, J.

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res. 17, 129–139 (1977).
[CrossRef] [PubMed]

Van De Kraats, J.

G. J. Van Der Wildt, M. A. Bouman, and J. Van De Kraats, “The effect of anticipation on the transfer function of the human lens system,” Opt. Acta 21, 843–860 (1974).
[CrossRef]

Van Der Wildt, G. J.

G. J. Van Der Wildt, M. A. Bouman, and J. Van De Kraats, “The effect of anticipation on the transfer function of the human lens system,” Opt. Acta 21, 843–860 (1974).
[CrossRef]

Wald, G.

Westheimer, G.

G. Westheimer and S. M. Blair, “Accommodation of the eye during sleep and anaesthesia,” Vision Res. 13, 1035–1040 (1973).
[CrossRef] [PubMed]

F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. London 145, 479–494 (1959).

F. W. Campbell and G. Westheimer, “Factors influencing accommodation responses of the human eye,” J. Opt. Soc. Am. 49, 568–571 (1959).
[CrossRef] [PubMed]

Wyszecki, G.

Zuber, B. I.

A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
[CrossRef] [PubMed]

Am. J. Optom. Arch. Am. Acad. Optom. (7)

G. G. Heath, “Accommodative responses of totally colour-blind observers,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 457–465 (1956).
[PubMed]

G. G. Heath, “The influence of visual acuity on the accommodative responses of the eye,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 513–524 (1956).
[CrossRef] [PubMed]

M. W. Morgan, “The resting state of accommodation,” Am. J. Optom. Arch. Am. Acad. Optom. 34, 347–353 (1957).
[CrossRef] [PubMed]

H. A. Knoll, “Measuring ametropia with a gas laser,” Am. J. Optom. Arch. Am. Acad. Optom. 43, 415–418 (1966).
[CrossRef] [PubMed]

W. R. Baldwin and W. B. Stover, “Observation of laser standing wave patterns to determine refractive status,” Am. J. Optom. Arch. Am. Acad. Optom. 45, 143–151 (1969).

M. W. Morgan, “Accommodation and its relationship to convergence,” Am. J. Optom. Arch. Am. Acad. Optom. 21, 183–195 (1944).
[CrossRef]

M. C. Nadell and H. A. Knoll, “The effect of luminance, target configuration and lenses upon the refractive state of the eye, Pts. I and II,” Am. J. Optom. Arch. Am. Acad. Optom. 33, 24–42; Am. J. Optom. Arch. Am. Acad. Optom. 33, 86–95 (1956).

Brit. J. Ophthal. (1)

E. F. Fincham, “The accommodation reflex and its stimulus,” Brit. J. Ophthal. 35, 381–393 (1951).

Brit. J. Physiol. Opt. (4)

M. Millodot and J. G. Sivak, “Influence of accommodation on the chromatic aberration of the eye,” Brit. J. Physiol. Opt. 28, 169–174 (1973).
[PubMed]

T. C. A. Jenkins, “Aberrations of the eye and their effects upon vision, Pt. II,” Brit. J. Physiol. Opt. 20, 161–201 (1963).

H. Lowery, R. Hall, and H. Moores, “On dynamic retinoscopy,” Brit. J. Physiol. Opt. 10, 49–55 (1936).

W. N. Charman and G. Heron, “A simple optometer for accommodation studies,” Brit. J. Physiol. Opt. 30, 1–12 (1975).

Bull. Soc. Ophtalmol. Paris (1)

A. Polack, “Le chromatisme de l’oeil,” Bull. Soc. Ophtalmol. Paris 35, 401–563 (1923).

C. R. Acad. Sci. (1)

A. Arnulf and F. Flamant, “Limites de résolution de l’oeil en lumière monochromatiques et applications à la vision instrumentale,” C. R. Acad. Sci. 230, 1791–1793 (1950).

J. Opt. Soc. Am. (12)

D. C. Sinclair, “Demonstration of chromatic aberration in the eye using coherent light,” J. Opt. Soc. Am. 55, 575–576 (1965).
[CrossRef] [PubMed]

R. T. Hennessy and H. W. Leibowitz, “Subjective measurement of accommodation with laser light,” J. Opt. Soc. Am. 60, 1700–1701 (1970).
[CrossRef] [PubMed]

C. A. Johnson, “Effects of luminance and stimulus distance on accommodation and visual resolution,” J. Opt. Soc. Am. 66, 138–142 (1976).
[CrossRef] [PubMed]

G. Wald, “Blue blindness in the normal fovea,” J. Opt. Soc. Am. 57, 1289–1301 (1967).
[CrossRef] [PubMed]

F. W. Campbell and G. Westheimer, “Factors influencing accommodation responses of the human eye,” J. Opt. Soc. Am. 49, 568–571 (1959).
[CrossRef] [PubMed]

M. Alpern, “Variability of accommodation during steady fixation at various levels of illuminance,” J. Opt. Soc. Am. 48, 193–197 (1958).
[CrossRef] [PubMed]

J. G. Sivak and M. Millodot, “Axial chromatic aberration of the eye with an achromatizing lens,” J. Opt. Soc. Am. 64, 1724–1725 (1974).
[CrossRef]

G. Wald and D. R. Griffin, “The change in refractive power of the human eye in dim and bright light,” J. Opt. Soc. Am. 37, 321–326 (1947).
[CrossRef] [PubMed]

R. E. Bedford and G. Wyszecki, “Axial chromatic aberration of the human eye,” J. Opt. Soc. Am. 47, 564–565 (1957).
[CrossRef] [PubMed]

J. M. Otero, “Influence of the state of accommodation on the visual performance of the human eye,” J. Opt. Soc. Am. 41, 942–948 (1951).
[CrossRef] [PubMed]

R. T. Hennessy, “Instrument myopia,” J. Opt. Soc. Am. 65, 1114–1120 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz and D. A. Owens, “Night myopia and the intermediate dark focus of accommodation,” J. Opt. Soc. Am. 65, 1121–1128 (1975).
[CrossRef] [PubMed]

J. Physiol. London (3)

F. W. Campbell, J. G. Robson, and G. Westheimer, “Fluctuations of accommodation under steady viewing conditions,” J. Physiol. London 145, 479–494 (1959).

E. F. Fincham, “Defects of the colour-sense mechanism as indicated by the accommodation reflex,” J. Physiol. London 121, 570–580 (1953).

F. W. Campbell, “The minimum quantity of light required to elicit the accommodation reflex in man,” J. Physiol. London 123, 357–366 (1954).

Ophthalmic Optician (1)

J. A. M. Jennings and W. N. Charman, “A comparison of errors in some methods of subjective refraction,” Ophthalmic Optician 13, 8–18 (1973).

Opt. Acta (2)

F. W. Campbell, “The depth of field of the human eye,” Opt. Acta 4, 157–164 (1957).
[CrossRef]

G. J. Van Der Wildt, M. A. Bouman, and J. Van De Kraats, “The effect of anticipation on the transfer function of the human lens system,” Opt. Acta 21, 843–860 (1974).
[CrossRef]

Optik (1)

H. A. W. Schober, “Über die Akkommodations ruhelage,” Optik 11, 282–290 (1954).

Percept. Psychophys. (1)

R. R. Provine and J. M. Enoch, “On voluntary ocular accomodation,” Percept. Psychophys. 17, 209–212 (1975).
[CrossRef]

Physiol. Rev. (1)

F. M. Toates, “Accommodation function of the human eye,” Physiol. Rev. 52, 828–863 (1972).

Proc. R. Soc. London Ser. A (1)

P. G. Nutting, “The axial chromatic aberration of the human eye,” Proc. R. Soc. London Ser. A 90, 440–443 (1914).
[CrossRef]

Proc. R. Soc. London Ser. B (1)

H. E. Roaf, “Visual acuity in light of different colours,” Proc. R. Soc. London Ser. B 106, 276–292 (1930).
[CrossRef]

Rev. Opt. (1)

A. Arnulf and O. Dupuy, “Contribution à l’étude des microfluctuations d’accommodation de l’oeil,” Rev. Opt. 39, 195–208 (1960).

Science (1)

H. W. Leibowitz and D. A. Owens, “Anomalous myopias and the intermediate dark-focus of accommodation,” Science 189, 646–648 (1975).
[CrossRef] [PubMed]

Sitz. preuss. Akad. Wiss. (1)

A. König, “Über den menschlichen Sehpurpur und seine Bedeutung für das Sehen,” Sitz. preuss. Akad. Wiss. 30, 577–598 (1894).

Vision Res. (7)

A. Troelstra, B. I. Zuber, D. Miller, and L. Stark, “Accommodative tracking: a trial and error function,” Vision Res. 4, 585–594 (1964).
[CrossRef] [PubMed]

R. T. Hennessy, T. Iida, K. Shiina, and H. W. Leibowitz, “The effect of pupil size on accommodation,” Vision Res. 16, 587–589 (1976).
[CrossRef] [PubMed]

G. Westheimer and S. M. Blair, “Accommodation of the eye during sleep and anaesthesia,” Vision Res. 13, 1035–1040 (1973).
[CrossRef] [PubMed]

E. Ingelstam and S. Ragnarsson, “Eye refraction examined by aid of speckle pattern produced by coherent light,” Vision Res. 12, 411–429 (1972).
[CrossRef] [PubMed]

W. N. Charman and J. Tucker, “Dependence of accommodation response on the spatial frequency spectrum of the observed object,” Vision Res. 17, 129–139 (1977).
[CrossRef] [PubMed]

T. N. Cornsweet and H. D. Crane, “Training the visual accommodation system,” Vision Res. 13, 713–715 (1973).
[CrossRef] [PubMed]

W. N. Charman and J. A. M. Jennings, “Objective measurements of the longitudinal chromatic aberration of the human eye,” Vision Res. 16, 999–1005 (1976).
[CrossRef] [PubMed]

Other (4)

A. Ivanoff, Les aberrations-de l’oeil (Editions Rev. d’Optique, Paris, 1953).

G. A. Fry, Blur of the Retinal Image (Ohio State University Press, Columbus, 1955).

Y. Le Grand, Form and Space Vision, translated by M. Millodot and G. G. Heath (Indiana U. P., Bloomington, 1967).

H. D. Crane, “A theoretical analysis of the visual accommodation system in humans,” Stanford Res. Inst. Project 5454 NASA CR-606 (1966) (unpublished).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

FIG. 1
FIG. 1

Schematic layout of target and optometer systems. Beam-splitters are employed to direct the laser light onto the optometer drum and to combine the target and optometer paths at the eye.

FIG. 2
FIG. 2

Steady-state accommodation responses, as measured by the laser optometer at 633 nm, for 6 subjects when observing red (□) and blue (○) targets. The dotted and chain-dotted lines indicate the “ideal” one-to-one response-stimulus relationships expected for the red and blue targets, respectively, when allowance is made for the difference in longitudinal chromatic aberration between the target and the laser reference (633 nm) wavelengths. Open and filled symbols for untrained subject (f) represent results obtained in a first and second set of observations, respectively. The age, normal refraction, and response to an empty target field are indicated for each subject.

FIG. 3
FIG. 3

Accommodation response, as measured by the laser optometer at 633 nm, plotted against target vergence for three colors of target illumination. The filled circles indicate responses where all the 6/6 Snellen target letters were legible, the unfilled circles where the letters were illegible. The lengths of the vertical bars show the standard deviations of the data. Dashed lines indicate “ideal” one-to-one response–stimulus curves, chain-dotted lines the “ideal” responses when modified on the assumption of a constant correction for chromatic aberration between the target and laser wavelengths. Subject WNC (38 years; − 0.25 D. S. myope), luminance 10 cd m−2.

FIG. 4
FIG. 4

Accommodation response, as measured by the laser optometer at 633 nm, plotted against target vergence for three colors of target illumination. The filled circles indicate responses where all the 6/6 Snellen target letters were legible, the unfilled circles where the letters were illegible. The lengths of the vertical bars show the standard deviations of the data. Dashed lines indicate “ideal” one-to-one response–stimulus curves, chain-dotted lines the “ideal” responses when modified on the assumption of a constant correction for chromatic aberration between the target and laser wavelengths. Subject WNC (38 years; − 0.25 D. S. myope), luminance 10 cd m−2.

FIG. 5
FIG. 5

Longitudinal chromatic aberration for WNC, expressed in terms of the ocular refraction at the cornea. Right eye, 5 mm artificial pupil, cycloplegia.

FIG. 6
FIG. 6

Slow changes in accommodation to abrupt changes in target vergence. Subject WNC, white light, 6/6 Snellen target, luminance 10 cd m−2. Horizontal arrows show the final, mean response levels. Top: Target change from − 1.0 to − 5.4 D. S. Bottom: Target change from − 4.8 to − 0.40 D. S.

FIG. 7
FIG. 7

Records of accommodation obtained with an infrared optometer. In each pair of traces, the upper curve is the response, the lower the stimulus change. Subject WNC, right eye, mydriasis (10% phenylephrine), 5 mm artificial pupil, target luminance 10 cd m−2. (a) Response to a target at a constant vergence (− 2 D. S.) and monochromatic illumination alternating between red and blue. The subject always tried to keep the target image sharp. (b) Response to target as in (a) but with the subject merely trying to keep the target sharp in red light. (c) Response to target as in (a) but with subject merely trying to keep the blue target sharp. (d) Response to changes between the dioptric values indicated in the vergence of a white-light target when subject always tries to keep the image sharp. The demanded accommodation change equals that necessitated by ocular chromatic aberration in (a). (e) Response to target as in (d) when subject merely tries to keep the further target in focus.

FIG. 8
FIG. 8

Dynamic accommodation responses of four observers, with ages as indicated, to a target at constant vergence (− 2 D. S.) which is alternately illuminated with monochromatic red and blue light. Pupil diameters ~ 6 mm, target luminance 10 cd m−2. The upper records of each pair show response changes; gaps are caused by eye blinks. The lower records show stimulus changes, where the upper level represents red illumination, the lower blue. (a) Responses when subjects try to keep both red and blue target images sharp. (b) Responses when subjects merely try to keep the red image sharp. (c) Responses when subjects merely try to keep the blue images sharp.

FIG. 9
FIG. 9

Difference in response to white ( λ ¯ = 556 nm) and green ( λ ¯ = 546 nm) 6/6 Snellen letter targets, measured at 633 nm, as a function of the target vergence. The filled circles indicate where the targets in both types of illumination were legible, open circles where one or both were illegible. The broken line shows the difference in response predicted on the basis of constant longitudinal chromatic aberration between the two mean effective wavelengths. Subject WNC.

FIG. 10
FIG. 10

Wavelength dependence of values derived from Figs. 3 and 4 for the target vergences that produced constant accommodation responses, measured at 633 nm; subject WNC. The horizontal bars indicate the effective bandwidths of the filters used, the vertical bars error estimates based on the standard deviations in Figs. 3 and 4. Horizontal arrows indicate the corresponding target vergences for white light. The dashed curves show the predicted changes in target vergence for constant accommodation response, based on the assumption that the only factor is a constant ocular longitudinal chromatic aberration; these predicted curves have been displaced parallel to the ordinate axis to fit each set of derived values at 546 nm.

FIG. 11
FIG. 11

Top: Responses, measured with the laser optometer at two wavelengths (442 and 633 nm), when WNC observed 6/6 Snellen letter targets illuminated by white light through his natural pupil. Filled circles indicate that the letters were legible. Field luminance 10 cd m−2. Bottom: Difference in the measured responses, or increment in ocular power, at the two laser wavelengths as a function of target vergence. The dashed and dotted curves indicate mean values of longitudinal chromatic aberration for these wavelengths, and standard deviation, found with the same eye under cycloplegia with a 5 mm artificial pupil (Fig. 5).

FIG. 12
FIG. 12

Values derived from Figs. 3 and 4 for accommodative response, measured at 633 nm, to targets having constant vergence and luminance (10 cd m−2) but varying color of illumination. Target vergences (diopters) are shown on the right. The dashed curves show the expected changes in response if it is assumed that a constant ocular longitudinal chromatic aberration is being fully compensated. Arrows show the response levels in white light.

Tables (3)

Tables Icon

TABLE I Mean effective wavelength ( λ ¯), λ1, λ2, and bandwidth (Δλ) for each of the filter combinations used.

Tables Icon

TABLE II Response values found for WNC when accommodating on an empty field of 18° subtense and 10 cd m−2 luminance as a function of the color of the field.

Tables Icon

TABLE III Means of the standard deviations in accommodation response in the range − 1.0 to − 4.0 D. S., as measured at 633 nm when WNC viewed 6/6 Snellen targets illuminated by different colors.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ min λ ¯ λ V λ T λ d λ = λ ¯ λ max λ V λ T λ d λ , λ min λ 1 λ V λ T λ d λ = λ 2 λ max λ V λ T λ d λ = 1 2 λ 1 λ 2 λ V λ T λ d λ ,
Δ λ = λ 2 - λ 1 .