Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. A. Stetson, J. Opt. Soc. Am. 64, 1 (1974).
    [Crossref]
  2. M. Dubas and W. Schumann, Opt. Acta 21, 547 (1974).
    [Crossref]
  3. K. A. Stetson, Appl. Opt. 14, 272 (1975).
    [Crossref] [PubMed]
  4. K. A. Stetson, Appl. Opt. 14, 2256 (1975).
    [Crossref] [PubMed]
  5. R. Pryputniewicz and K. A. Stetson, Appl. Opt. (in press).
  6. K. A. Stetson, Optik (Stuttgart) 31, 576 (1970).

1975 (2)

1974 (2)

K. A. Stetson, J. Opt. Soc. Am. 64, 1 (1974).
[Crossref]

M. Dubas and W. Schumann, Opt. Acta 21, 547 (1974).
[Crossref]

1970 (1)

K. A. Stetson, Optik (Stuttgart) 31, 576 (1970).

Dubas, M.

M. Dubas and W. Schumann, Opt. Acta 21, 547 (1974).
[Crossref]

Pryputniewicz, R.

R. Pryputniewicz and K. A. Stetson, Appl. Opt. (in press).

Schumann, W.

M. Dubas and W. Schumann, Opt. Acta 21, 547 (1974).
[Crossref]

Stetson, K. A.

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Opt. Acta (1)

M. Dubas and W. Schumann, Opt. Acta 21, 547 (1974).
[Crossref]

Optik (Stuttgart) (1)

K. A. Stetson, Optik (Stuttgart) 31, 576 (1970).

Other (1)

R. Pryputniewicz and K. A. Stetson, Appl. Opt. (in press).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Ω ( R o ) = K · L ,
Ω ( R o ) = K f · R o + K · L o ,
Ω ( R ) = K fob · R + K · L o .
K fob = K f - n ˆ ( K f · K 2 ) / ( n ˆ · K 2 ) ,
Ω ( R ) = K f · R o + K · L o + K f · ( R - R o ) - K f · K 2 ( n ˆ · R ) / ( n ˆ · K 2 ) ,
Ω ( R ) = K · L + K f · [ ( R - R o ) - K 2 ( n ˆ · R ) / ( n ˆ · K 2 ) ] .
0 = Δ K 2 · L - Δ K 2 · K f ( n ˆ · R ) / ( n ˆ · K 2 ) + Δ K 2 · n ˆ ( K f · K 2 ) ( n ˆ · R ) / ( n ˆ · K 2 ) 2 + Δ K f · [ ( R - R o ) - Δ K 2 ( n ˆ · R ) / ( n ˆ · K 2 ) ] .
0 = Δ K 2 · { L - ( λ D / 2 π ) [ K f - n ˆ ( K f · K 2 ) / ( n ˆ · K 2 ) ] } .
0 = Δ K 2 · [ L - K fob ( λ D / 2 π ) ] .
L ob ( 2 π / λ ) = K fob D .
k ˆ ap · [ L ob ( 2 π / λ ) - D K fob ] = 0 ,