Abstract

The phenomenon of night myopia, the tendency to overaccommodate for distant objects as luminance is decreased, results from the passive return of accommodation to an individually determined intermediate resting or dark focus. More generally, accommodation is viewed as a compromise between the subject’s individual resting focus and the accommodative stimulus. Under optimum viewing conditions, accommodation tends to correspond to the distance of the stimulus, but is biased progressively toward the dark focus as the adequacy of the accommodative stimulus is degraded by decreased luminance. Control experiments suggest that optical aberrations are not major factors that contribute to this effect.

© 1975 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Levine, R. Soc. Lond., Notes and Reports 20, 100 (1965).
    [CrossRef]
  2. M. Koomen, R. Scolnik, and R. Tousey, J. Opt. Soc. Am. 41, 80 (1951).
    [CrossRef]
  3. H. A. Knoll, Am. J. Optom. 29, 69 (1952).
    [CrossRef]
  4. H. A. W. Schober, Optik 11, 282 (1954).
  5. J. Mellerio, Vision Res. 6, 217 (1966).
    [CrossRef] [PubMed]
  6. I. M. Borish, Clinical Refraction (Professional Press, New York, 1970).
  7. H. Schober, Das Sehen, Vol. II, 68 (VEB Fachbuchverlag, Leipzig, 1964), has pointed out that the defocused image that results from night myopia may serve to increase light sensitivity under low-luminance conditions, in a manner analogous to the tapetum lucidem of lower forms.
  8. F. M. Toates, Physiol. Rev. 52, 828 (1972).
    [PubMed]
  9. G. Wald and D. R. Griffin, J. Opt. Soc. Am. 37, 321 (1947).
    [CrossRef] [PubMed]
  10. J. M. Otero, J. Opt. Soc. Am. 41, 942 (1951).
    [CrossRef] [PubMed]
  11. M. Luckiesh and F. K. Moss, J. Expt. Psychol. 26, 352 (1940).
    [CrossRef]
  12. F. W. Campbell and J. A. F. Primrose. Trans. Opt Soc. 73, 353 (1953).
  13. M. Alpern and H. David, Ind. Med. Sur. 27, 551 (1958).
  14. E. F. Fincham, Vision Res. 1, 425 (1962).
    [CrossRef]
  15. G. Westheimer, J. Opt. Soc. Am. 47, 714 (1957).
    [CrossRef] [PubMed]
  16. G. Westheimer and S. M. Blair, Vision Res. 13, 1035 (1973).
    [CrossRef] [PubMed]
  17. M. W. Morgan, Am. J. Optom. 23, 99 (1946); Am. J. Optom. 34, 347 (1957); Brit. J. Physiol. Opt. 15, 154 (1958).
    [CrossRef]
  18. R. T. Hennessy and H. W. Leibowitz, J. Opt. Soc. Am. 60, 1700 (1970); Beh. Res. Meth. Inst. 4, 237 (1972); H. W. Leibowitz and R. T. Hennessy, Am. Psychologist 30, 349 (1975).
    [CrossRef] [PubMed]
  19. A recent article by W. N. Charman, Am. J. Optom. Physiol. Opt. 51, 832 (1974), indicates that the plane of no apparent motion, or stationarity, for the laser optometers used in the present experiments actually falls at varying positions between the axis and surface of the drum. Thus, our assuming the axis as the reference point results in a small error of underestimation of the accommodative response, which increases with increased accommodation.
    [CrossRef] [PubMed]
  20. H. A. Knoll, Am. J. Optom. 43, 415 (1966).
    [CrossRef]
  21. W. R. Baldwin and W. B. Stover, Am. J. Optom. 45, 143 (1968).
    [CrossRef]
  22. F. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
    [CrossRef] [PubMed]
  23. Institute for Perception TNO, Soesterberg, Netherlands.
  24. Since all subjects demonstrated at least 20/20 near and far acuity, large refractive errors are considered unlikely. Any small remaining refractive errors would not have affected either the correlation values nor the nature of the present results.
  25. The authors are indebted to Dr. Lewis O. Harvey, Jr. and to John T. Fisher, M.D. and Channing Nicholas, M.D. for their advice and assistance.
  26. The combined effect of spherical and chromatic aberrations has been estimated to be only 0.5–0.75 D, which is considerably less than the magnitude of night myopia shown by the majority of the subjects in the present study. Spherical aberration, as well as other effects associated with large pupils, should be exaggerated by pupil dilation; this was not found in Experiment III. The possible contribution of these factors, in addition to those of chromatic aberration and the Purkinje shift, seem to be minimized by the fact that all luminance levels in the present study were photopic.
  27. J. Palacios, Investigacion y Progresso 14, 267 (1943).
  28. C. A. Johnson, Ph.D. dissertation (Pennsylvania State University, 1974) University Microfilms, Ann Arbor, Mich. (1974).
  29. R. T. Hennessy, J. Opt. Soc. Am. 65, 1114 (1975).
    [CrossRef] [PubMed]
  30. H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).
  31. H. W. Leibowitz and D. A. Owens, Science 189, 646 (1975).
    [CrossRef] [PubMed]

1975 (3)

R. T. Hennessy, J. Opt. Soc. Am. 65, 1114 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

H. W. Leibowitz and D. A. Owens, Science 189, 646 (1975).
[CrossRef] [PubMed]

1974 (1)

A recent article by W. N. Charman, Am. J. Optom. Physiol. Opt. 51, 832 (1974), indicates that the plane of no apparent motion, or stationarity, for the laser optometers used in the present experiments actually falls at varying positions between the axis and surface of the drum. Thus, our assuming the axis as the reference point results in a small error of underestimation of the accommodative response, which increases with increased accommodation.
[CrossRef] [PubMed]

1973 (1)

G. Westheimer and S. M. Blair, Vision Res. 13, 1035 (1973).
[CrossRef] [PubMed]

1972 (2)

F. M. Toates, Physiol. Rev. 52, 828 (1972).
[PubMed]

F. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[CrossRef] [PubMed]

1970 (1)

1968 (1)

W. R. Baldwin and W. B. Stover, Am. J. Optom. 45, 143 (1968).
[CrossRef]

1966 (2)

H. A. Knoll, Am. J. Optom. 43, 415 (1966).
[CrossRef]

J. Mellerio, Vision Res. 6, 217 (1966).
[CrossRef] [PubMed]

1965 (1)

J. R. Levine, R. Soc. Lond., Notes and Reports 20, 100 (1965).
[CrossRef]

1962 (1)

E. F. Fincham, Vision Res. 1, 425 (1962).
[CrossRef]

1958 (1)

M. Alpern and H. David, Ind. Med. Sur. 27, 551 (1958).

1957 (1)

1954 (1)

H. A. W. Schober, Optik 11, 282 (1954).

1953 (1)

F. W. Campbell and J. A. F. Primrose. Trans. Opt Soc. 73, 353 (1953).

1952 (1)

H. A. Knoll, Am. J. Optom. 29, 69 (1952).
[CrossRef]

1951 (2)

1947 (1)

1946 (1)

M. W. Morgan, Am. J. Optom. 23, 99 (1946); Am. J. Optom. 34, 347 (1957); Brit. J. Physiol. Opt. 15, 154 (1958).
[CrossRef]

1943 (1)

J. Palacios, Investigacion y Progresso 14, 267 (1943).

1940 (1)

M. Luckiesh and F. K. Moss, J. Expt. Psychol. 26, 352 (1940).
[CrossRef]

Alpern, M.

M. Alpern and H. David, Ind. Med. Sur. 27, 551 (1958).

Baldwin, W. R.

W. R. Baldwin and W. B. Stover, Am. J. Optom. 45, 143 (1968).
[CrossRef]

Blair, S. M.

G. Westheimer and S. M. Blair, Vision Res. 13, 1035 (1973).
[CrossRef] [PubMed]

Borish, I. M.

I. M. Borish, Clinical Refraction (Professional Press, New York, 1970).

Campbell, F. W.

F. W. Campbell and J. A. F. Primrose. Trans. Opt Soc. 73, 353 (1953).

Charman, W. N.

A recent article by W. N. Charman, Am. J. Optom. Physiol. Opt. 51, 832 (1974), indicates that the plane of no apparent motion, or stationarity, for the laser optometers used in the present experiments actually falls at varying positions between the axis and surface of the drum. Thus, our assuming the axis as the reference point results in a small error of underestimation of the accommodative response, which increases with increased accommodation.
[CrossRef] [PubMed]

David, H.

M. Alpern and H. David, Ind. Med. Sur. 27, 551 (1958).

Fincham, E. F.

E. F. Fincham, Vision Res. 1, 425 (1962).
[CrossRef]

Griffin, D. R.

Hennessy, R. T.

Ingelstam, F.

F. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[CrossRef] [PubMed]

Johnson, C. A.

C. A. Johnson, Ph.D. dissertation (Pennsylvania State University, 1974) University Microfilms, Ann Arbor, Mich. (1974).

Knoll, H. A.

H. A. Knoll, Am. J. Optom. 43, 415 (1966).
[CrossRef]

H. A. Knoll, Am. J. Optom. 29, 69 (1952).
[CrossRef]

Koomen, M.

Leibowitz, H. W.

Levine, J. R.

J. R. Levine, R. Soc. Lond., Notes and Reports 20, 100 (1965).
[CrossRef]

Luckiesh, M.

M. Luckiesh and F. K. Moss, J. Expt. Psychol. 26, 352 (1940).
[CrossRef]

Mellerio, J.

J. Mellerio, Vision Res. 6, 217 (1966).
[CrossRef] [PubMed]

Morgan, M. W.

M. W. Morgan, Am. J. Optom. 23, 99 (1946); Am. J. Optom. 34, 347 (1957); Brit. J. Physiol. Opt. 15, 154 (1958).
[CrossRef]

Moss, F. K.

M. Luckiesh and F. K. Moss, J. Expt. Psychol. 26, 352 (1940).
[CrossRef]

Otero, J. M.

Owens, D. A.

H. W. Leibowitz and D. A. Owens, Science 189, 646 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

Palacios, J.

J. Palacios, Investigacion y Progresso 14, 267 (1943).

Primrose, J. A. F.

F. W. Campbell and J. A. F. Primrose. Trans. Opt Soc. 73, 353 (1953).

Ragnarsson, S. I.

F. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[CrossRef] [PubMed]

Schober, H.

H. Schober, Das Sehen, Vol. II, 68 (VEB Fachbuchverlag, Leipzig, 1964), has pointed out that the defocused image that results from night myopia may serve to increase light sensitivity under low-luminance conditions, in a manner analogous to the tapetum lucidem of lower forms.

Schober, H. A. W.

H. A. W. Schober, Optik 11, 282 (1954).

Scolnik, R.

Stover, W. B.

W. R. Baldwin and W. B. Stover, Am. J. Optom. 45, 143 (1968).
[CrossRef]

Toates, F. M.

F. M. Toates, Physiol. Rev. 52, 828 (1972).
[PubMed]

Tousey, R.

Wald, G.

Westheimer, G.

G. Westheimer and S. M. Blair, Vision Res. 13, 1035 (1973).
[CrossRef] [PubMed]

G. Westheimer, J. Opt. Soc. Am. 47, 714 (1957).
[CrossRef] [PubMed]

Am. J. Optom. (4)

H. A. Knoll, Am. J. Optom. 29, 69 (1952).
[CrossRef]

M. W. Morgan, Am. J. Optom. 23, 99 (1946); Am. J. Optom. 34, 347 (1957); Brit. J. Physiol. Opt. 15, 154 (1958).
[CrossRef]

H. A. Knoll, Am. J. Optom. 43, 415 (1966).
[CrossRef]

W. R. Baldwin and W. B. Stover, Am. J. Optom. 45, 143 (1968).
[CrossRef]

Am. J. Optom. Physiol. Opt. (1)

A recent article by W. N. Charman, Am. J. Optom. Physiol. Opt. 51, 832 (1974), indicates that the plane of no apparent motion, or stationarity, for the laser optometers used in the present experiments actually falls at varying positions between the axis and surface of the drum. Thus, our assuming the axis as the reference point results in a small error of underestimation of the accommodative response, which increases with increased accommodation.
[CrossRef] [PubMed]

Ind. Med. Sur. (1)

M. Alpern and H. David, Ind. Med. Sur. 27, 551 (1958).

Investigacion y Progresso (1)

J. Palacios, Investigacion y Progresso 14, 267 (1943).

J. Expt. Psychol. (1)

M. Luckiesh and F. K. Moss, J. Expt. Psychol. 26, 352 (1940).
[CrossRef]

J. Opt. Soc. Am. (6)

Optik (1)

H. A. W. Schober, Optik 11, 282 (1954).

Physiol. Rev. (1)

F. M. Toates, Physiol. Rev. 52, 828 (1972).
[PubMed]

Psychologia (1)

H. W. Leibowitz, R. T. Hennessy, and D. A. Owens, Psychologia 18,Sept. (1975).

R. Soc. Lond., Notes and Reports (1)

J. R. Levine, R. Soc. Lond., Notes and Reports 20, 100 (1965).
[CrossRef]

Science (1)

H. W. Leibowitz and D. A. Owens, Science 189, 646 (1975).
[CrossRef] [PubMed]

Trans. Opt Soc. (1)

F. W. Campbell and J. A. F. Primrose. Trans. Opt Soc. 73, 353 (1953).

Vision Res. (4)

E. F. Fincham, Vision Res. 1, 425 (1962).
[CrossRef]

G. Westheimer and S. M. Blair, Vision Res. 13, 1035 (1973).
[CrossRef] [PubMed]

J. Mellerio, Vision Res. 6, 217 (1966).
[CrossRef] [PubMed]

F. Ingelstam and S. I. Ragnarsson, Vision Res. 12, 411 (1972).
[CrossRef] [PubMed]

Other (7)

Institute for Perception TNO, Soesterberg, Netherlands.

Since all subjects demonstrated at least 20/20 near and far acuity, large refractive errors are considered unlikely. Any small remaining refractive errors would not have affected either the correlation values nor the nature of the present results.

The authors are indebted to Dr. Lewis O. Harvey, Jr. and to John T. Fisher, M.D. and Channing Nicholas, M.D. for their advice and assistance.

The combined effect of spherical and chromatic aberrations has been estimated to be only 0.5–0.75 D, which is considerably less than the magnitude of night myopia shown by the majority of the subjects in the present study. Spherical aberration, as well as other effects associated with large pupils, should be exaggerated by pupil dilation; this was not found in Experiment III. The possible contribution of these factors, in addition to those of chromatic aberration and the Purkinje shift, seem to be minimized by the fact that all luminance levels in the present study were photopic.

C. A. Johnson, Ph.D. dissertation (Pennsylvania State University, 1974) University Microfilms, Ann Arbor, Mich. (1974).

I. M. Borish, Clinical Refraction (Professional Press, New York, 1970).

H. Schober, Das Sehen, Vol. II, 68 (VEB Fachbuchverlag, Leipzig, 1964), has pointed out that the defocused image that results from night myopia may serve to increase light sensitivity under low-luminance conditions, in a manner analogous to the tapetum lucidem of lower forms.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

FIG. 1
FIG. 1

Schematic diagram of apparatus used to evaluate accommodation while viewing the clinical test chart and a diffuse laser pattern.

FIG. 2
FIG. 2

Scatter diagram that illustrates the relationship between the accommodative response to a diffuse laser pattern presented at 6.5 diopters and the dark focus of accommodation.

FIG. 3
FIG. 3

Scatter diagram that illustrates the relationship between the accommodative response to a clinical acuity test chart presented at 0.25 diopter and the dark focus of accommodation.

FIG. 4
FIG. 4

Schematic diagram of apparatus and outdoor scene employed to test night myopia. Luminance level was changed by inserting neutral density filters into the window aperture in front of the subject.

FIG. 5
FIG. 5

Scatter diagrams that illustrate the change of accommodative response to a distant outdoor scene as luminance is reduced. Each subject is represented by one data point in each graph.

FIG. 6
FIG. 6

Accommodative response to the distant outdoor scene before (P) and after administration of mydriatic. Pupil dilation occurred at approximately 25 min. (m) myopic; (e) emmetropic; (h) hyperopic.

FIG. 7
FIG. 7

Dark focus of accommodation before and after administration of mydriatic.

Tables (3)

Tables Icon

TABLE I Data from Experiment I. Accommodation (in diopters) while viewing a laser–speckle pattern and a test chart at two luminance levels.

Tables Icon

TABLE II Data from Experiment II. Accommodation (in diopters) while viewing a distant target at three luminance levels.

Tables Icon

TABLE III Data for Experiment IV. Accommodation (in diopters) while viewing a distant target under two motivation levels.