Abstract

Cathodoluminescence and photoluminescence efficiencies of powdered uranium glasses were measured. Absolute radiant exitance spectra of the glasses were determined during excitation with 100–350 keV electrons and with 253.7 nm light. The spectra are the same for both excitation processes. The glasses luminesce over the wavelength range 470–630 nm. Maxima occur at 518, 534, and 563 nm. The most efficient glass in the series had the composition, by weight percent, 29.40 B2O3, 58.80 SiO2, 9.80 Na2O, and 2.00 UO2. Powders of 8.6 and 4.6 μm particle sizes of the glass have cathodoluminescence efficiencies of (1.1±0.1)% for electrons with 100–350 keV energies. The photoluminescence radiant efficiency is (12±1)%.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. G. Eubanks, Ph.D. dissertation (University of Maryland, College Park, 1969) (University Microfilms, Ann Arbor, Mich., Order No. 69-15 500).
  2. E. Allen, J. Opt. Soc. Am. 54, 506 (1964).
    [Crossref]
  3. R. L. Belcher, Ph.D. dissertation (University of Maryland, College Park, 1966) (University Microfilms, Ann Arbor, Mich., Order No. 67-2361).
  4. M. J. Kniedler, Ph.D. dissertation (University of Maryland, College Park, 1968) (University Microfilms, Ann Arbor, Mich., Order No. 69-9588).
  5. P. Kubelka and F. Munk, Z. Tech. Physik 12, 593 (1931).
  6. M. J. Berger, in Methods in Computational Physics, Vol. 1, edited by B. Alder, S. Fernback, and M. Rotenberg (Academic, New York, 1963), p. 135.
  7. S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940).
    [Crossref]
  8. P. Kubelka, J. Opt. Soc. Am. 38, 448 (1958).
    [Crossref]
  9. R. L. Longini, J. Opt. Soc. Am. 39, 551 (1949).
    [Crossref]
  10. A. Bril and W. Hoekstra, Philips Res. Repts. 16, 356 (1961).

1964 (1)

1961 (1)

A. Bril and W. Hoekstra, Philips Res. Repts. 16, 356 (1961).

1958 (1)

1949 (1)

1940 (1)

S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940).
[Crossref]

1931 (1)

P. Kubelka and F. Munk, Z. Tech. Physik 12, 593 (1931).

Allen, E.

Belcher, R. L.

R. L. Belcher, Ph.D. dissertation (University of Maryland, College Park, 1966) (University Microfilms, Ann Arbor, Mich., Order No. 67-2361).

Berger, M. J.

M. J. Berger, in Methods in Computational Physics, Vol. 1, edited by B. Alder, S. Fernback, and M. Rotenberg (Academic, New York, 1963), p. 135.

Bril, A.

A. Bril and W. Hoekstra, Philips Res. Repts. 16, 356 (1961).

Eubanks, A. G.

A. G. Eubanks, Ph.D. dissertation (University of Maryland, College Park, 1969) (University Microfilms, Ann Arbor, Mich., Order No. 69-15 500).

Goudsmit, S.

S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940).
[Crossref]

Hoekstra, W.

A. Bril and W. Hoekstra, Philips Res. Repts. 16, 356 (1961).

Kniedler, M. J.

M. J. Kniedler, Ph.D. dissertation (University of Maryland, College Park, 1968) (University Microfilms, Ann Arbor, Mich., Order No. 69-9588).

Kubelka, P.

P. Kubelka, J. Opt. Soc. Am. 38, 448 (1958).
[Crossref]

P. Kubelka and F. Munk, Z. Tech. Physik 12, 593 (1931).

Longini, R. L.

Munk, F.

P. Kubelka and F. Munk, Z. Tech. Physik 12, 593 (1931).

Saunderson, J. L.

S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940).
[Crossref]

J. Opt. Soc. Am. (3)

Philips Res. Repts. (1)

A. Bril and W. Hoekstra, Philips Res. Repts. 16, 356 (1961).

Phys. Rev. (1)

S. Goudsmit and J. L. Saunderson, Phys. Rev. 57, 24 (1940).
[Crossref]

Z. Tech. Physik (1)

P. Kubelka and F. Munk, Z. Tech. Physik 12, 593 (1931).

Other (4)

M. J. Berger, in Methods in Computational Physics, Vol. 1, edited by B. Alder, S. Fernback, and M. Rotenberg (Academic, New York, 1963), p. 135.

R. L. Belcher, Ph.D. dissertation (University of Maryland, College Park, 1966) (University Microfilms, Ann Arbor, Mich., Order No. 67-2361).

M. J. Kniedler, Ph.D. dissertation (University of Maryland, College Park, 1968) (University Microfilms, Ann Arbor, Mich., Order No. 69-9588).

A. G. Eubanks, Ph.D. dissertation (University of Maryland, College Park, 1969) (University Microfilms, Ann Arbor, Mich., Order No. 69-15 500).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Extension tube of Van de Graaff accelerator, and light path.

Fig. 2
Fig. 2

Cathodoluminescence spectra of powdered glasses at 200 keV. 1—2% UO2, 2—1% UO2, 3—0.5% UO2, 4—4% UO2, 5—commercial glass. Beam current normalized to 0.1 μA · cm−2.

Fig. 3
Fig. 3

Cathodoluminescence spectrum of 2% UO2 glass as a function of electron energy. Beam current normalized to 0.1 μA · cm−2.

Fig. 4
Fig. 4

Electron depth–dose plot.

Fig. 5
Fig. 5

Experimental reflectance data fitted to the theoretical expression of Kubelka and Munk [Eq. (2)].

Fig. 6
Fig. 6

Absorption S, scattering coefficient K, and reflectance R of glass powders as functions of wavelength λ.

Fig. 7
Fig. 7

Cathodoluminescence intrinsic efficiencies as functions of powder-sample thickness and electron energy. X—100 keV, ○—200 keV.

Fig. 8
Fig. 8

Effect of powder particle size on spectral radiant exitance—8.6 μm, – – 4.6 μm, + calculated points.

Fig. 9
Fig. 9

Photoluminescence spectra of glasses excited by 253.7 nm light. Normalized to light output of 2% UO2 glass. 1—2% UO2, 2—1% UO2, 3—0.5% UO2, 4—4% UO2, 5—commercial glass.

Tables (2)

Tables Icon

Table I Cathodoluminescent intrinsic efficiencies of powdered glasses.a

Tables Icon

Table II Absorptances and efficiencies of powdered glasses at 253.7 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η = 1 Q λ 1 λ 2 ( M e ( λ ) 0 X F ( x , X ) G ( x , X , λ ) d x ) d λ .
R ( λ ) = ( R b - R ) / R - R ( R b - 1 / R ) exp ( 2 b S X ) ( R b - R ) - ( R b - 1 / R ) exp ( 2 b S X ) ,
K = S ( R - 1 ) 2 2 R .
G ( x , X , λ ) = [ 1 + R ( λ ) ] [ R a - R ( λ ) R ( λ ) - ( R a - 1 R ( λ ) ) exp [ 2 b S ( λ ) ( X - x ) ] ] exp [ b S ( λ ) x ] 2 [ R a - R ( λ ) - ( R a - 1 R ( λ ) ) exp [ 2 b S ( λ ) x ] ] ,
W = λ 1 λ 2 M e ( λ ) d λ ,
P = a p ,
η r = W P = λ 1 λ 2 M e ( λ ) d λ / a p .