Abstract

Modulation transfer functions (MTF’s) of high-resolution plates Agfa–Gevaert Scientia 8E70, 8E75, 8E75B, and 10E75 have been determined. A strong influence of the development conditions was found and studied. Observations and models given in the literature on adjacency effects at low spatial frequencies were extended and verified for spatial frequencies up to 1500 cycles/mm. This was possible by the use of a new type of microdensitometer (MSSM) and because the optical MTF of these plates is close to 1. By use of very weak developers, an apparent increase of the MTF by factors up to 2 could be achieved. Because this enhancement occurred only in connection with very low γ, there is no gain of contrast in applications to microreproduction. The diffraction efficiency of holograms was not improved, but exposure latitude was increased. Development effects may alter reconstructed wavefields, and spatial filters may deviate considerably from their designs, especially when low-γ development is used to obtain wide latitude.

© 1974 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillian, New York, 1966), p. 521.
  2. C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).
  3. G. C. Higgins, Photogr. Sci. Eng. 15, 106 (1971).
  4. R. S. Barrows and R. N. Wolfe, Photogr. Sci. Eng. 15, 472 (1971).
  5. R. L. Lamberts, J. Opt. Soc. Am. 49, 425 (1959).
    [Crossref]
  6. L. O. Hendeberg, Ark. Fys. 16, 457 (1960).
  7. P. G. Powell, J. Photogr. Sci. 9, 312 (1961).
  8. K. Spenner, M.S. thesis (Dept. of Photographic Science, Technical University, Munich, 1963).
  9. H. Frieser and H. Kramer, Photogr. Korresp. 102, 69 (1966).
  10. G. Langner and R. Müller, J. Photogr. Sci. 15, 1 (1967).
  11. H. Frieser and M. Pflugbeil, Z. Angew. Physik 22, 336 (1967).
  12. R. Reuther, Radiol. Diagnost. 10, 417 (1969).
  13. E. Görgens and R. Reuther, Photogr. Korresp. 107, 222 (1971).
  14. K. Biedermann, Optik 28, 160 (1968).
  15. K. Biedermann and K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).
  16. K. Biedermann and S. Johansson, Optik 35, 391 (1972).
  17. K. Biedermann and S. Johansson, J. Opt. Soc. Am. 62, 1385A (1972).
  18. H. T. Buschmann and H. J. Metz, Opt. Commun. 2, 373 (1971).
    [Crossref]
  19. H. Frieser, Kino-Technik 17, 167 (1935).
  20. R. L. Lamberts, J. Opt. Soc. Am. 51, 982 (1961).
    [Crossref]
  21. J. L. Simonds, J. R. Kelch, and G. C. Higgins, Appl. Opt. 3, 23 (1964).
    [Crossref]
  22. R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).
  23. Modulation Transfer Data for Kodak Films, Pamphlet No. P-49, 1967.
  24. K. Sayanagi, J. Opt. Soc. Am. 50, 185 (1960).
    [Crossref]
  25. D. H. Kelly, J. Opt. Soc. Am. 50, 269 (1960); J. Opt. Soc. Am. 51, 319 (1961).
    [Crossref]
  26. H. T. Buschmann, in Optical and Acoustical Holography, edited by E. Camatini (Plenum, New York, 1972), p. 151.
    [Crossref]
  27. G. Hansen and A. Richter, Optik 31, 488 (1970).
  28. G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. 1, 141 (1969).
    [Crossref]
  29. J. W. Goodman, D. W. Jackson, M. Lehman, and J. Knotts, Appl. Opt. 8, 1581 (1969).
    [Crossref] [PubMed]
  30. K. Biedermann and N.-E. Molin, J. Phys. E. 3, 669 (1970).
    [Crossref]
  31. G. C. Brock, Image Evaluation for Aerial Photography (Focal, London, 1970).
  32. G. W. W. Stevens, Photogr. J. 82, 42 (1942).
  33. M. Levy, Photogr. Sci. Eng. 11, 46 (1967).
  34. A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
    [Crossref]
  35. D. P. Jablonowski, R. A. Heinz, and J. O. Artman, Appl. Opt. 10, 1988 (1971).
    [Crossref] [PubMed]
  36. H. Strübin, Photogr. Korresp. 104, 5, 26, 53 (1968).
  37. W. F. Berg, Appl. Opt. 8, 2407 (1969).
    [Crossref] [PubMed]
  38. F. G. Kaspar, J. Opt. Soc. Am. 63, 37 (1973).
    [Crossref]
  39. H. M. Smith, J. Opt. Soc. Am. 62, 802 (1972).
    [Crossref]
  40. K. Biedermann and H. Frieser, Optik 23, 75 (1965).
  41. C. N. Nelson, Appl. Opt. 11, 87 (1972).
    [PubMed]
  42. K. Biedermann, Appl. Opt. 10, 584 (1971).
    [Crossref] [PubMed]
  43. S.-I. Ragnarsson, Phys. Scr. 2, 145 (1970).
    [Crossref]
  44. H. M. Smith and C. A. Callari, J. Opt. Soc. Am. 63, 487A (1973).
    [Crossref]

1973 (2)

H. M. Smith and C. A. Callari, J. Opt. Soc. Am. 63, 487A (1973).
[Crossref]

F. G. Kaspar, J. Opt. Soc. Am. 63, 37 (1973).
[Crossref]

1972 (4)

H. M. Smith, J. Opt. Soc. Am. 62, 802 (1972).
[Crossref]

C. N. Nelson, Appl. Opt. 11, 87 (1972).
[PubMed]

K. Biedermann and S. Johansson, Optik 35, 391 (1972).

K. Biedermann and S. Johansson, J. Opt. Soc. Am. 62, 1385A (1972).

1971 (7)

H. T. Buschmann and H. J. Metz, Opt. Commun. 2, 373 (1971).
[Crossref]

C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).

G. C. Higgins, Photogr. Sci. Eng. 15, 106 (1971).

R. S. Barrows and R. N. Wolfe, Photogr. Sci. Eng. 15, 472 (1971).

E. Görgens and R. Reuther, Photogr. Korresp. 107, 222 (1971).

K. Biedermann, Appl. Opt. 10, 584 (1971).
[Crossref] [PubMed]

D. P. Jablonowski, R. A. Heinz, and J. O. Artman, Appl. Opt. 10, 1988 (1971).
[Crossref] [PubMed]

1970 (3)

S.-I. Ragnarsson, Phys. Scr. 2, 145 (1970).
[Crossref]

K. Biedermann and N.-E. Molin, J. Phys. E. 3, 669 (1970).
[Crossref]

G. Hansen and A. Richter, Optik 31, 488 (1970).

1969 (5)

G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. 1, 141 (1969).
[Crossref]

K. Biedermann and K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

J. W. Goodman, D. W. Jackson, M. Lehman, and J. Knotts, Appl. Opt. 8, 1581 (1969).
[Crossref] [PubMed]

W. F. Berg, Appl. Opt. 8, 2407 (1969).
[Crossref] [PubMed]

R. Reuther, Radiol. Diagnost. 10, 417 (1969).

1968 (2)

K. Biedermann, Optik 28, 160 (1968).

H. Strübin, Photogr. Korresp. 104, 5, 26, 53 (1968).

1967 (4)

Modulation Transfer Data for Kodak Films, Pamphlet No. P-49, 1967.

M. Levy, Photogr. Sci. Eng. 11, 46 (1967).

G. Langner and R. Müller, J. Photogr. Sci. 15, 1 (1967).

H. Frieser and M. Pflugbeil, Z. Angew. Physik 22, 336 (1967).

1966 (1)

H. Frieser and H. Kramer, Photogr. Korresp. 102, 69 (1966).

1965 (1)

K. Biedermann and H. Frieser, Optik 23, 75 (1965).

1964 (2)

1962 (1)

R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).

1961 (2)

P. G. Powell, J. Photogr. Sci. 9, 312 (1961).

R. L. Lamberts, J. Opt. Soc. Am. 51, 982 (1961).
[Crossref]

1960 (3)

1959 (1)

1942 (1)

G. W. W. Stevens, Photogr. J. 82, 42 (1942).

1935 (1)

H. Frieser, Kino-Technik 17, 167 (1935).

Artman, J. O.

Barrows, R. S.

R. S. Barrows and R. N. Wolfe, Photogr. Sci. Eng. 15, 472 (1971).

Berg, W. F.

Biedermann, K.

K. Biedermann and S. Johansson, Optik 35, 391 (1972).

K. Biedermann and S. Johansson, J. Opt. Soc. Am. 62, 1385A (1972).

K. Biedermann, Appl. Opt. 10, 584 (1971).
[Crossref] [PubMed]

K. Biedermann and N.-E. Molin, J. Phys. E. 3, 669 (1970).
[Crossref]

K. Biedermann and K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

K. Biedermann, Optik 28, 160 (1968).

K. Biedermann and H. Frieser, Optik 23, 75 (1965).

Brock, G. C.

G. C. Brock, Image Evaluation for Aerial Photography (Focal, London, 1970).

Buschmann, H. T.

H. T. Buschmann and H. J. Metz, Opt. Commun. 2, 373 (1971).
[Crossref]

H. T. Buschmann, in Optical and Acoustical Holography, edited by E. Camatini (Plenum, New York, 1972), p. 151.
[Crossref]

Callari, C. A.

H. M. Smith and C. A. Callari, J. Opt. Soc. Am. 63, 487A (1973).
[Crossref]

Frieser, H.

H. Frieser and M. Pflugbeil, Z. Angew. Physik 22, 336 (1967).

H. Frieser and H. Kramer, Photogr. Korresp. 102, 69 (1966).

K. Biedermann and H. Frieser, Optik 23, 75 (1965).

H. Frieser, Kino-Technik 17, 167 (1935).

Furrer, F.

G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. 1, 141 (1969).
[Crossref]

Goodman, J. W.

Görgens, E.

E. Görgens and R. Reuther, Photogr. Korresp. 107, 222 (1971).

Hansen, G.

G. Hansen and A. Richter, Optik 31, 488 (1970).

Heinz, R. A.

Hendeberg, L. O.

L. O. Hendeberg, Ark. Fys. 16, 457 (1960).

Higgins, G. C.

Jablonowski, D. P.

Jackson, D. W.

James, T. H.

C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillian, New York, 1966), p. 521.

Johansson, S.

K. Biedermann and S. Johansson, J. Opt. Soc. Am. 62, 1385A (1972).

K. Biedermann and S. Johansson, Optik 35, 391 (1972).

Kaspar, F. G.

Kelch, J. R.

Kelly, D. H.

Knotts, J.

Kramer, H.

H. Frieser and H. Kramer, Photogr. Korresp. 102, 69 (1966).

Lamberts, R. L.

Lamberty, D. R.

G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. 1, 141 (1969).
[Crossref]

Langner, G.

G. Langner and R. Müller, J. Photogr. Sci. 15, 1 (1967).

Lehman, M.

Levy, M.

M. Levy, Photogr. Sci. Eng. 11, 46 (1967).

Mees, C. E. K.

C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillian, New York, 1966), p. 521.

Metz, H. J.

H. T. Buschmann and H. J. Metz, Opt. Commun. 2, 373 (1971).
[Crossref]

Molin, N.-E.

K. Biedermann and N.-E. Molin, J. Phys. E. 3, 669 (1970).
[Crossref]

Müller, R.

G. Langner and R. Müller, J. Photogr. Sci. 15, 1 (1967).

Nelson, C. N.

C. N. Nelson, Appl. Opt. 11, 87 (1972).
[PubMed]

C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).

Pflugbeil, M.

H. Frieser and M. Pflugbeil, Z. Angew. Physik 22, 336 (1967).

Powell, P. G.

P. G. Powell, J. Photogr. Sci. 9, 312 (1961).

Ragnarsson, S.-I.

S.-I. Ragnarsson, Phys. Scr. 2, 145 (1970).
[Crossref]

Reuther, R.

E. Görgens and R. Reuther, Photogr. Korresp. 107, 222 (1971).

R. Reuther, Radiol. Diagnost. 10, 417 (1969).

Richter, A.

G. Hansen and A. Richter, Optik 31, 488 (1970).

Sayanagi, K.

Simonds, J. L.

Smith, H. M.

H. M. Smith and C. A. Callari, J. Opt. Soc. Am. 63, 487A (1973).
[Crossref]

H. M. Smith, J. Opt. Soc. Am. 62, 802 (1972).
[Crossref]

Spenner, K.

K. Spenner, M.S. thesis (Dept. of Photographic Science, Technical University, Munich, 1963).

Stetson, K. A.

K. Biedermann and K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

Stevens, G. W. W.

G. W. W. Stevens, Photogr. J. 82, 42 (1942).

Stroke, G. W.

G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. 1, 141 (1969).
[Crossref]

Strübin, H.

H. Strübin, Photogr. Korresp. 104, 5, 26, 53 (1968).

Vander Lugt, A.

A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
[Crossref]

Wolfe, R. N.

R. S. Barrows and R. N. Wolfe, Photogr. Sci. Eng. 15, 472 (1971).

Appl. Opt. (6)

Ark. Fys. (1)

L. O. Hendeberg, Ark. Fys. 16, 457 (1960).

IEEE Trans. Inf. Theory (1)

A. Vander Lugt, IEEE Trans. Inf. Theory 10, 139 (1964).
[Crossref]

J. Opt. Soc. Am. (8)

J. Photogr. Sci. (2)

P. G. Powell, J. Photogr. Sci. 9, 312 (1961).

G. Langner and R. Müller, J. Photogr. Sci. 15, 1 (1967).

J. Phys. E. (1)

K. Biedermann and N.-E. Molin, J. Phys. E. 3, 669 (1970).
[Crossref]

J. Soc. Motion Pict. Telev. Eng. (1)

R. L. Lamberts, J. Soc. Motion Pict. Telev. Eng. 71, 635 (1962).

Kino-Technik (1)

H. Frieser, Kino-Technik 17, 167 (1935).

Opt. Commun. (2)

G. W. Stroke, F. Furrer, and D. R. Lamberty, Opt. Commun. 1, 141 (1969).
[Crossref]

H. T. Buschmann and H. J. Metz, Opt. Commun. 2, 373 (1971).
[Crossref]

Optik (4)

K. Biedermann and S. Johansson, Optik 35, 391 (1972).

K. Biedermann, Optik 28, 160 (1968).

G. Hansen and A. Richter, Optik 31, 488 (1970).

K. Biedermann and H. Frieser, Optik 23, 75 (1965).

Pamphlet No. P-49 (1)

Modulation Transfer Data for Kodak Films, Pamphlet No. P-49, 1967.

Photogr. J. (1)

G. W. W. Stevens, Photogr. J. 82, 42 (1942).

Photogr. Korresp. (3)

H. Frieser and H. Kramer, Photogr. Korresp. 102, 69 (1966).

E. Görgens and R. Reuther, Photogr. Korresp. 107, 222 (1971).

H. Strübin, Photogr. Korresp. 104, 5, 26, 53 (1968).

Photogr. Sci. Eng. (5)

K. Biedermann and K. A. Stetson, Photogr. Sci. Eng. 13, 361 (1969).

C. N. Nelson, Photogr. Sci. Eng. 15, 82 (1971).

G. C. Higgins, Photogr. Sci. Eng. 15, 106 (1971).

R. S. Barrows and R. N. Wolfe, Photogr. Sci. Eng. 15, 472 (1971).

M. Levy, Photogr. Sci. Eng. 11, 46 (1967).

Phys. Scr. (1)

S.-I. Ragnarsson, Phys. Scr. 2, 145 (1970).
[Crossref]

Radiol. Diagnost. (1)

R. Reuther, Radiol. Diagnost. 10, 417 (1969).

Z. Angew. Physik (1)

H. Frieser and M. Pflugbeil, Z. Angew. Physik 22, 336 (1967).

Other (4)

K. Spenner, M.S. thesis (Dept. of Photographic Science, Technical University, Munich, 1963).

C. E. K. Mees and T. H. James, The Theory of the Photographic Process (Macmillian, New York, 1966), p. 521.

G. C. Brock, Image Evaluation for Aerial Photography (Focal, London, 1970).

H. T. Buschmann, in Optical and Acoustical Holography, edited by E. Camatini (Plenum, New York, 1972), p. 151.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transfer of a sinusoidal signal of modulation p0 from exposure to density by MTF and D–logE curve without (dashed curve) and with adjacency effect (full curve).

Fig. 2
Fig. 2

Experiment showing development effects. Microdensitometer traces obtained from one-half of the plate developed in strong developer Agfa 80 are shown at the left. With Agfa Rodinal diluted 1 to 100 with water, to the right, density traces clearly overlap, demonstrating that equal exposures can be reproduced by different densities, depending upon exposure in neighboring areas. Plate Agfa-Gevaert Scientia 8E75, ν = 35 cycles/mm.

Fig. 3
Fig. 3

Apparent MTF for Agfa-Gevaert Scientia 8E75 hologram plate. × Development in strong developer formula Agfa 80, ○ developer Rodinal diluted 1 + 100. (Both 5 min at 20°C.)

Fig. 4
Fig. 4

The value of the apparent MTF of Agfa-Gevaert plate Scientia 8E70 obtained at ν =400 cycles/mm plotted versus γ for the development conditions listed in Table I. The dashed line is a hyperbola, γ · M(ν) = const, describing the amplification in a photographic system.

Fig. 5
Fig. 5

Dependence of apparent MTF on density at the working point. Plate Agfa-Gevaert Scientia 8E75, ν = 400 cycles/mm, developers Agfa 80 Δ, Agfa Rodinal 1 + 100 ×, and POTA ○ (5 min at 20°C).

Fig. 6
Fig. 6

Modulation transfer factors for red light (λ = 633 nm) for four hologram plates, Agfa-Gevaert Scientia 8E70 (Δ), 8E75 (×), 8E75B (○), and 10E75 (□). Development in formula Agfa 80 (5 min at 20°C).

Fig. 7
Fig. 7

Apparent MTF’s from development in Agfa Rodinal diluted 1 to 100 (5 min at 20°C). Note shift in MTF ordinate.

Fig. 8
Fig. 8

D–logE-curves of Agfa-Gevaert Scientia 8E75 plate obtained by development in formula Agfa 80 at left and in Agfa Rodinal diluted 1 to 100 with water at right (5 min at 20°C). α2(E) is a characteristic function, derived from the D–logE curve, for diffraction efficiency.

Fig. 9
Fig. 9

Diffraction efficiencies as function of exposure obtained from input modulation p0 = 0.2 at 400 cycles/mm (full lines) and 1500 cycles/mm (dashed lines). 8E75 plates. Agfa 80 developer at left. Rodinal (1 to 100) at right.

Tables (1)

Tables Icon

Table I Developers used in our work.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E ( x ) = Ī · t · ( 1 + p 0 · cos 2 π ν x ) ,
Ī · ( 1 + p 0 ) · t = Ī · ( 1 - p 0 ) · k · t
MTF ( app ) = MTF ( opt ) · MTF ( dev ) .
η ( Ē ) = [ 1 2 · p 0 ( ν ) · M ( ν ) · log e · α ( Ē ) ] 2 ,
η ( Ē ) = [ 1 4 · p 0 ( ν ) · M ( ν ) · γ ( Ē ) · τ A ( E ) ] 2 .