Abstract

The physical model of strong optical scintillation of plane waves is extended to the case of spherical-wave propagation. The spherical-wave amplitude filter function is derived and compared to the corresponding plane-wave result. Specifically, we calculate the spherical- to plane-wave log-amplitude-variance ratio. For weak fluctuations, our results are identical to the results of perturbation theory, with which the spherical-wave log-amplitude variance is less than the corresponding plane-wave result. On the other hand, for’-strong fluctuations (i.e., in the saturation regime), the plane- and spherical-wave log-amplitude variances saturate to the same constant value. Expressions are presented, in the saturation regime, for the plane- and spherical-wave log-amplitude covariance function and compared with the corresponding results in the regime of weak fluctuations.

PDF Article

References

  • View by:
  • |
  • |

  1. H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).
  2. V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971).
  3. The limits on the integrals appearing in Eq. (19) are understood to be contained implicitly in Φn(Q).
  4. Indeed, Eq. (24) suggests that the amplitude filter function in the saturation regime is independent of the initial beam geometry, and is equal to Q2(Q2+Q02)-1. This implies that the log-amplitude variance for an arbitrary beam wave saturates to the same constant, independent of the initial beam geometry (Ref. 5).
  5. M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk. SSSR, Otdelenie Oceanologi, Fiziki, Atmosfery i. Geografii, pp. 1–39, report of work prior to publication, Moscow (1973). English translation available from The Aerospace Corp. Library Services, Literature Research Group, P. O. Box 02057, Los Angeles, Calif. 90009. Translation No. LRG-73-T-28.
  6. D. A. de Wolf, J. Opt. Soc. Am. 64, 360 (1974).
  7. H. T. Yura, J. Opt. Soc. Am. 64, 1211 (1974).
  8. J. R. Dunphy and J. R. Kerr, J. Opt. Soc. Am. 63, 981 (1973).
  9. D. L. Fried, J. Opt. Soc. Am. 57, 169 (1967).
  10. H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

de Wolf, D. A.

D. A. de Wolf, J. Opt. Soc. Am. 64, 360 (1974).

Dunphy, J. R.

J. R. Dunphy and J. R. Kerr, J. Opt. Soc. Am. 63, 981 (1973).

Fried, D. L.

D. L. Fried, J. Opt. Soc. Am. 57, 169 (1967).

Gracheva, M. E.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk. SSSR, Otdelenie Oceanologi, Fiziki, Atmosfery i. Geografii, pp. 1–39, report of work prior to publication, Moscow (1973). English translation available from The Aerospace Corp. Library Services, Literature Research Group, P. O. Box 02057, Los Angeles, Calif. 90009. Translation No. LRG-73-T-28.

Gurvich, A. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk. SSSR, Otdelenie Oceanologi, Fiziki, Atmosfery i. Geografii, pp. 1–39, report of work prior to publication, Moscow (1973). English translation available from The Aerospace Corp. Library Services, Literature Research Group, P. O. Box 02057, Los Angeles, Calif. 90009. Translation No. LRG-73-T-28.

Kashkarov, S. S.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk. SSSR, Otdelenie Oceanologi, Fiziki, Atmosfery i. Geografii, pp. 1–39, report of work prior to publication, Moscow (1973). English translation available from The Aerospace Corp. Library Services, Literature Research Group, P. O. Box 02057, Los Angeles, Calif. 90009. Translation No. LRG-73-T-28.

Kerr, J. R.

J. R. Dunphy and J. R. Kerr, J. Opt. Soc. Am. 63, 981 (1973).

Pokasov, V. V.

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk. SSSR, Otdelenie Oceanologi, Fiziki, Atmosfery i. Geografii, pp. 1–39, report of work prior to publication, Moscow (1973). English translation available from The Aerospace Corp. Library Services, Literature Research Group, P. O. Box 02057, Los Angeles, Calif. 90009. Translation No. LRG-73-T-28.

Tatarskii, V. I.

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971).

Yura, H. T.

H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).

H. T. Yura, J. Opt. Soc. Am. 64, 1211 (1974).

H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

Other

H. T. Yura, J. Opt. Soc. Am. 64, 59 (1974).

V. I. Tatarskii, The Effects of the Turbulent Atmosphere on Wave Propagation (National Technical Information Service, U. S. Dept. of Commerce, Springfield, Va., 1971).

The limits on the integrals appearing in Eq. (19) are understood to be contained implicitly in Φn(Q).

Indeed, Eq. (24) suggests that the amplitude filter function in the saturation regime is independent of the initial beam geometry, and is equal to Q2(Q2+Q02)-1. This implies that the log-amplitude variance for an arbitrary beam wave saturates to the same constant, independent of the initial beam geometry (Ref. 5).

M. E. Gracheva, A. S. Gurvich, S. S. Kashkarov, and V. V. Pokasov, Akad. Nauk. SSSR, Otdelenie Oceanologi, Fiziki, Atmosfery i. Geografii, pp. 1–39, report of work prior to publication, Moscow (1973). English translation available from The Aerospace Corp. Library Services, Literature Research Group, P. O. Box 02057, Los Angeles, Calif. 90009. Translation No. LRG-73-T-28.

D. A. de Wolf, J. Opt. Soc. Am. 64, 360 (1974).

H. T. Yura, J. Opt. Soc. Am. 64, 1211 (1974).

J. R. Dunphy and J. R. Kerr, J. Opt. Soc. Am. 63, 981 (1973).

D. L. Fried, J. Opt. Soc. Am. 57, 169 (1967).

H. T. Yura, J. Opt. Soc. Am. 64, 357 (1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.