Abstract

The temperature dependence of the Ni2 + ion absorption-transition maxima has been studied in the magnetic host materials of KNi1–xMgxF3, RbFeF3, RbCoF3, RbMnF3, MnF2, and KMnF3. The behavior of the absorption transitions in these materials differs from the behavior due to purely thermal effects observed in the nonmagnetic hosts. Additional shifts, due to the exchange interactions responsible for the magnetic properties, are superimposed on the thermal shifts. In the pure-nickel salts, the departures from purely thermal behavior occur in the vicinity of the ordering temperature of the crystals. In KNi1–xMgxF3, crystals, the departures are observed in materials of sufficient Ni2+ concentration, below the Néel temperature of the pure material. In magnetic materials where the Ni2+ ion is an impurity, the magnetically induced shifts in the nickel absorption bands are observed near the ordering temperature of the host crystal.

© 1972 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).
    [Crossref]
  2. W. W. Holloway and M. Kestigian, Phys. Rev. Letters 15, 17 (1965).
    [Crossref]
  3. J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964); J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).
    [Crossref]
  4. E. I. Golovenchits, A. G. Gurevich, and V. A. Sanina, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu 3, 408 (1966) [Sov. Phys. JETP Letters 3, 266 (1966)].
  5. J. F. B. Hawkes, M. J. M. Leask, and J. H. M. Thornley, Phys. Letters 20, 457 (1966).
    [Crossref]
  6. W. W. Holloway and M. Kestigian, J. Chem. Phys. 45, 639 (1966).
    [Crossref]
  7. U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters 24A, 577 (1967); G. K. Wertheim, H. J. Guggenheim, H. J. Williams, and P. N. E. Buchanan, Phys. Rev. 158, 446 (1967).
    [Crossref]
  8. Landolt-Bornstein, Tabellen Magnetische und Elektrischen Eigenschaften 9-II (Springer, Berlin, 1963).
  9. W. W. Holloway and M. Kestigian, J. Appl. Phys. 38, 1480 (1967).
    [Crossref]

1967 (2)

U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters 24A, 577 (1967); G. K. Wertheim, H. J. Guggenheim, H. J. Williams, and P. N. E. Buchanan, Phys. Rev. 158, 446 (1967).
[Crossref]

W. W. Holloway and M. Kestigian, J. Appl. Phys. 38, 1480 (1967).
[Crossref]

1966 (3)

E. I. Golovenchits, A. G. Gurevich, and V. A. Sanina, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu 3, 408 (1966) [Sov. Phys. JETP Letters 3, 266 (1966)].

J. F. B. Hawkes, M. J. M. Leask, and J. H. M. Thornley, Phys. Letters 20, 457 (1966).
[Crossref]

W. W. Holloway and M. Kestigian, J. Chem. Phys. 45, 639 (1966).
[Crossref]

1965 (1)

W. W. Holloway and M. Kestigian, Phys. Rev. Letters 15, 17 (1965).
[Crossref]

1964 (1)

J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964); J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).
[Crossref]

1963 (1)

K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).
[Crossref]

Ferguson, J.

J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964); J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).
[Crossref]

Ganiel, U.

U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters 24A, 577 (1967); G. K. Wertheim, H. J. Guggenheim, H. J. Williams, and P. N. E. Buchanan, Phys. Rev. 158, 446 (1967).
[Crossref]

Golovenchits, E. I.

E. I. Golovenchits, A. G. Gurevich, and V. A. Sanina, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu 3, 408 (1966) [Sov. Phys. JETP Letters 3, 266 (1966)].

Guggenheim, H. J.

J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964); J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).
[Crossref]

Gurevich, A. G.

E. I. Golovenchits, A. G. Gurevich, and V. A. Sanina, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu 3, 408 (1966) [Sov. Phys. JETP Letters 3, 266 (1966)].

Hawkes, J. F. B.

J. F. B. Hawkes, M. J. M. Leask, and J. H. M. Thornley, Phys. Letters 20, 457 (1966).
[Crossref]

Holloway, W. W.

W. W. Holloway and M. Kestigian, J. Appl. Phys. 38, 1480 (1967).
[Crossref]

W. W. Holloway and M. Kestigian, J. Chem. Phys. 45, 639 (1966).
[Crossref]

W. W. Holloway and M. Kestigian, Phys. Rev. Letters 15, 17 (1965).
[Crossref]

Kestigian, M.

W. W. Holloway and M. Kestigian, J. Appl. Phys. 38, 1480 (1967).
[Crossref]

U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters 24A, 577 (1967); G. K. Wertheim, H. J. Guggenheim, H. J. Williams, and P. N. E. Buchanan, Phys. Rev. 158, 446 (1967).
[Crossref]

W. W. Holloway and M. Kestigian, J. Chem. Phys. 45, 639 (1966).
[Crossref]

W. W. Holloway and M. Kestigian, Phys. Rev. Letters 15, 17 (1965).
[Crossref]

Knox, K.

K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).
[Crossref]

Leask, M. J. M.

J. F. B. Hawkes, M. J. M. Leask, and J. H. M. Thornley, Phys. Letters 20, 457 (1966).
[Crossref]

Sanina, V. A.

E. I. Golovenchits, A. G. Gurevich, and V. A. Sanina, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu 3, 408 (1966) [Sov. Phys. JETP Letters 3, 266 (1966)].

Shtrikman, S.

U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters 24A, 577 (1967); G. K. Wertheim, H. J. Guggenheim, H. J. Williams, and P. N. E. Buchanan, Phys. Rev. 158, 446 (1967).
[Crossref]

Shulman, R. G.

K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).
[Crossref]

Sugano, S.

K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).
[Crossref]

Thornley, J. H. M.

J. F. B. Hawkes, M. J. M. Leask, and J. H. M. Thornley, Phys. Letters 20, 457 (1966).
[Crossref]

Wood, D. L.

J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964); J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).
[Crossref]

J. Appl. Phys. (1)

W. W. Holloway and M. Kestigian, J. Appl. Phys. 38, 1480 (1967).
[Crossref]

J. Chem. Phys. (2)

W. W. Holloway and M. Kestigian, J. Chem. Phys. 45, 639 (1966).
[Crossref]

J. Ferguson, H. J. Guggenheim, and D. L. Wood, J. Chem. Phys. 40, 822 (1964); J. Ferguson and H. J. Guggenheim, J. Chem. Phys. 44, 1095 (1966).
[Crossref]

Phys. Letters (2)

U. Ganiel, M. Kestigian, and S. Shtrikman, Phys. Letters 24A, 577 (1967); G. K. Wertheim, H. J. Guggenheim, H. J. Williams, and P. N. E. Buchanan, Phys. Rev. 158, 446 (1967).
[Crossref]

J. F. B. Hawkes, M. J. M. Leask, and J. H. M. Thornley, Phys. Letters 20, 457 (1966).
[Crossref]

Phys. Rev. (1)

K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130, 512 (1963).
[Crossref]

Phys. Rev. Letters (1)

W. W. Holloway and M. Kestigian, Phys. Rev. Letters 15, 17 (1965).
[Crossref]

Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu (1)

E. I. Golovenchits, A. G. Gurevich, and V. A. Sanina, Zh. Eksperim. i Teor. Fiz. Pis’ma v Redaktsiyu 3, 408 (1966) [Sov. Phys. JETP Letters 3, 266 (1966)].

Other (1)

Landolt-Bornstein, Tabellen Magnetische und Elektrischen Eigenschaften 9-II (Springer, Berlin, 1963).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Effect of magnetic ordering of crystals of KNiF3 on the maxima of the optical transitions of the Ni2+ ion. (a) Temperature dependence on the maxima of the 3A21E transitions. (b) Temperature dependence of the 3A2 →- 3T1 transition maxima in the vicinity of the Néel temperature. Purely thermal behavior is indicated by the dashed line; the arrows designate the material-ordering temperature.

Fig. 2
Fig. 2

Effect of nonmagnetic-ion dilution in KNi1–xMgx F3 on the temperature dependence of the maxima of the 3A23T1 absorption transition of the Ni2+ ion. The dashed lines indicate purely thermal behavior (obtained by comparison of the curves); the arrows designate the crystal-ordering temperatures estimated from the low-temperature splitting of the 3A21E absorption transition of the nickel ion.

Fig. 3
Fig. 3

Magnetically induced shifts of the maxima of the 3A21E absorption transitions of the Ni2+ ion in the RbFeF3 and RbCoF3 crystals. The dashed lines indicate purely thermal behavior; the arrows designate the host-ordering temperatures.

Fig. 4
Fig. 4

Magnetically induced shifts of the maxima of the 3A21E absorption transitions of the Ni2+ ion in manganese host materials of KMnF3, MnF2, and RbMnF3 in which the nickel ion is an impurity. The dashed lines indicate purely thermal behavior; the arrows designate the host-ordering temperatures.