Abstract

The nf 2F series (n = 4–11) of B i is found from combinations with 3d 2D and 2s2p2 2D, and the series limit is derived by means of a Ritz formula, yielding an ionization potential of 66 928.10±0.1 cm−1. The same value applies to both 10B and 11B because the isotope shift of the ground state is shown to be zero. From the resolved structure of the transition 2s2p2 2D–4f 2F at 8212 Å, we derive for 2s2p2 2D a fine-structure interval of −0.31 cm−1 and an isotope shift of −0.58 cm−1, corresponding to a specific mass shift of −0.67 cm−1.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935).
    [CrossRef]
  2. For a description of the instrument, see K. B. S. Eriksson and I. Wenåker, Physica Scripta 1, 21 (1970).
    [CrossRef]
  3. N. E. Wagman, Bull. Univ. Pittsburgh 34, 1, 9 (1937).
  4. See, e.g., W. Opechowski and D. A. de Vries, Physica 6, 913 (1939).
    [CrossRef]
  5. E. W. Burke, Phys. Rev. 99, 1839 (1955). He gives −0.137±0.012 cm−1 for 2496.8 Å and −0.139±0.006 cm−1 for 2497.7 Å.
    [CrossRef]
  6. S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectrosc. 13, 256 (1964).
    [CrossRef]
  7. J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
    [CrossRef]
  8. G. Herzberg and J. W. C. Johns, Proc. Roy. Soc. (London) 298A, 142 (1967).
  9. H. E. Clearman, J. Opt. Soc. Am. 42, 373 (1952).
    [CrossRef]
  10. See, for instance, H. Lew and R. S. Title, Can. J. Phys. 38, 868 (1960), and A. Hese and H.-P. Weise, Z. Physik 215, 95 (1968).
    [CrossRef]

1970 (1)

For a description of the instrument, see K. B. S. Eriksson and I. Wenåker, Physica Scripta 1, 21 (1970).
[CrossRef]

1967 (2)

J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
[CrossRef]

G. Herzberg and J. W. C. Johns, Proc. Roy. Soc. (London) 298A, 142 (1967).

1964 (1)

S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectrosc. 13, 256 (1964).
[CrossRef]

1960 (1)

See, for instance, H. Lew and R. S. Title, Can. J. Phys. 38, 868 (1960), and A. Hese and H.-P. Weise, Z. Physik 215, 95 (1968).
[CrossRef]

1955 (1)

E. W. Burke, Phys. Rev. 99, 1839 (1955). He gives −0.137±0.012 cm−1 for 2496.8 Å and −0.139±0.006 cm−1 for 2497.7 Å.
[CrossRef]

1952 (1)

1939 (1)

See, e.g., W. Opechowski and D. A. de Vries, Physica 6, 913 (1939).
[CrossRef]

1937 (1)

N. E. Wagman, Bull. Univ. Pittsburgh 34, 1, 9 (1937).

1935 (1)

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935).
[CrossRef]

Bauer, S. H.

S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectrosc. 13, 256 (1964).
[CrossRef]

Burke, E. W.

E. W. Burke, Phys. Rev. 99, 1839 (1955). He gives −0.137±0.012 cm−1 for 2496.8 Å and −0.139±0.006 cm−1 for 2497.7 Å.
[CrossRef]

Clearman, H. E.

de Vries, D. A.

See, e.g., W. Opechowski and D. A. de Vries, Physica 6, 913 (1939).
[CrossRef]

Eriksson, K. B. S.

For a description of the instrument, see K. B. S. Eriksson and I. Wenåker, Physica Scripta 1, 21 (1970).
[CrossRef]

Grimm, F. A.

J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
[CrossRef]

Herzberg, G.

G. Herzberg and J. W. C. Johns, Proc. Roy. Soc. (London) 298A, 142 (1967).

S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectrosc. 13, 256 (1964).
[CrossRef]

Johns, J. W. C.

G. Herzberg and J. W. C. Johns, Proc. Roy. Soc. (London) 298A, 142 (1967).

J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
[CrossRef]

S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectrosc. 13, 256 (1964).
[CrossRef]

Lew, H.

See, for instance, H. Lew and R. S. Title, Can. J. Phys. 38, 868 (1960), and A. Hese and H.-P. Weise, Z. Physik 215, 95 (1968).
[CrossRef]

Mack, J. E.

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935).
[CrossRef]

Opechowski, W.

See, e.g., W. Opechowski and D. A. de Vries, Physica 6, 913 (1939).
[CrossRef]

Porter, R. F.

J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
[CrossRef]

Title, R. S.

See, for instance, H. Lew and R. S. Title, Can. J. Phys. 38, 868 (1960), and A. Hese and H.-P. Weise, Z. Physik 215, 95 (1968).
[CrossRef]

Wagman, N. E.

N. E. Wagman, Bull. Univ. Pittsburgh 34, 1, 9 (1937).

Wenåker, I.

For a description of the instrument, see K. B. S. Eriksson and I. Wenåker, Physica Scripta 1, 21 (1970).
[CrossRef]

Whitelaw, N. G.

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935).
[CrossRef]

Bull. Univ. Pittsburgh (1)

N. E. Wagman, Bull. Univ. Pittsburgh 34, 1, 9 (1937).

Can. J. Phys. (1)

See, for instance, H. Lew and R. S. Title, Can. J. Phys. 38, 868 (1960), and A. Hese and H.-P. Weise, Z. Physik 215, 95 (1968).
[CrossRef]

J. Mol. Spectrosc. (2)

S. H. Bauer, G. Herzberg, and J. W. C. Johns, J. Mol. Spectrosc. 13, 256 (1964).
[CrossRef]

J. W. C. Johns, F. A. Grimm, and R. F. Porter, J. Mol. Spectrosc. 22, 435 (1967).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (2)

E. W. Burke, Phys. Rev. 99, 1839 (1955). He gives −0.137±0.012 cm−1 for 2496.8 Å and −0.139±0.006 cm−1 for 2497.7 Å.
[CrossRef]

N. G. Whitelaw and J. E. Mack, Phys. Rev. 47, 677 (1935).
[CrossRef]

Physica (1)

See, e.g., W. Opechowski and D. A. de Vries, Physica 6, 913 (1939).
[CrossRef]

Physica Scripta (1)

For a description of the instrument, see K. B. S. Eriksson and I. Wenåker, Physica Scripta 1, 21 (1970).
[CrossRef]

Proc. Roy. Soc. (London) (1)

G. Herzberg and J. W. C. Johns, Proc. Roy. Soc. (London) 298A, 142 (1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (4)

Tables Icon

Table I Observations used for determining 4f2F and 5f2F.

Tables Icon

Table II The series 2s2p2 2D–2s2nf 2F observed in absorption by flash-photolysis technique.

Tables Icon

Table III The transition 2s22p 2P–2s2p2 2D as predicted and observed.

Tables Icon

Table IV Representation of the nf series by a two-parameter Ritz formula.a

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ T / T = m ( M 1 - M 2 ) / M 1 M 2 = 0.496 × 10 - 5 ,