Abstract

Observations of stimulated Brillouin and Raman effects in liquids and gases are reviewed. Additivity of the Brillouin shifts of mixtures of liquids is demonstrated. Optical mixing, the production of sum and difference frequencies by stimulated Brillouin emission, is shown, as is stimulated Rayleigh wing scattering, which is clearest with circularly polarized incident laser light, and with low-viscosity liquids. Stimulated thermal Rayleigh scattering has a threshold, is violet shifted about half the laser-line width, and requires a critical absorption coefficient in the scattering liquid.

© 1970 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 84 (1964).
    [CrossRef]
  2. R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
    [CrossRef]
  3. T. A. Wiggins, R. V. Wick, D. H. Rank, and A. H. Guenther, Appl. Opt. 4, 1203 (1965).
    [CrossRef]
  4. D. H. Rank, R. V. Wick, and T. A. Wiggins, Appl. Opt. 5, 131 (1966).
    [CrossRef] [PubMed]
  5. J. V. Foltz, D. H. Rank, and T. A. Wiggins, J. Mol. Spectrosc. 21, 203 (1966).
    [CrossRef]
  6. D. H. Rank, T. A. Wiggins, R. V. Wick, D. P. Eastman, and A. H. Guenther, J. Opt. Soc. Am. 56, 174 (1966).
    [CrossRef]
  7. E. E. Hagenlocher and W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
    [CrossRef]
  8. D. P. Eastman, T. A. Wiggins, and D. H. Rank, Appl. Opt. 5, 879 (1966).
    [CrossRef] [PubMed]
  9. R. V. Wick, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 17, 466 (1966).
    [CrossRef]
  10. T. A. Wiggins, R. V. Wick, N. D. Foltz, C. W. Cho, and D. H. Rank, J. Opt. Soc. Am. 57, 661 (1967).
    [CrossRef]
  11. N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
    [CrossRef]
  12. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
    [CrossRef]
  13. D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).
  14. R. M. Herman and M. A. Gray, Phys. Rev. Letters 19, 824 (1967).
    [CrossRef]
  15. D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
    [CrossRef]
  16. C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
    [CrossRef]

1968 (2)

N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[CrossRef]

1967 (4)

R. M. Herman and M. A. Gray, Phys. Rev. Letters 19, 824 (1967).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
[CrossRef]

T. A. Wiggins, R. V. Wick, N. D. Foltz, C. W. Cho, and D. H. Rank, J. Opt. Soc. Am. 57, 661 (1967).
[CrossRef]

1966 (5)

1965 (3)

E. E. Hagenlocher and W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

T. A. Wiggins, R. V. Wick, D. H. Rank, and A. H. Guenther, Appl. Opt. 4, 1203 (1965).
[CrossRef]

D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).

1964 (2)

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 84 (1964).
[CrossRef]

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

Brewer, R. G.

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

Cho, C. W.

N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
[CrossRef]

T. A. Wiggins, R. V. Wick, N. D. Foltz, C. W. Cho, and D. H. Rank, J. Opt. Soc. Am. 57, 661 (1967).
[CrossRef]

Eastman, D. P.

Fabelinskii, I. L.

D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).

Foltz, J. V.

J. V. Foltz, D. H. Rank, and T. A. Wiggins, J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

Foltz, N. D.

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[CrossRef]

N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
[CrossRef]

T. A. Wiggins, R. V. Wick, N. D. Foltz, C. W. Cho, and D. H. Rank, J. Opt. Soc. Am. 57, 661 (1967).
[CrossRef]

Garmire, E.

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 84 (1964).
[CrossRef]

Gray, M. A.

R. M. Herman and M. A. Gray, Phys. Rev. Letters 19, 824 (1967).
[CrossRef]

Guenther, A. H.

Hagenlocher, E. E.

E. E. Hagenlocher and W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

Herman, R. M.

R. M. Herman and M. A. Gray, Phys. Rev. Letters 19, 824 (1967).
[CrossRef]

Mash, D. I.

D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).

Morozov, V. V.

D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).

Rado, W. G.

E. E. Hagenlocher and W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

Rank, D. H.

N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
[CrossRef]

T. A. Wiggins, R. V. Wick, N. D. Foltz, C. W. Cho, and D. H. Rank, J. Opt. Soc. Am. 57, 661 (1967).
[CrossRef]

D. H. Rank, T. A. Wiggins, R. V. Wick, D. P. Eastman, and A. H. Guenther, J. Opt. Soc. Am. 56, 174 (1966).
[CrossRef]

D. P. Eastman, T. A. Wiggins, and D. H. Rank, Appl. Opt. 5, 879 (1966).
[CrossRef] [PubMed]

R. V. Wick, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 17, 466 (1966).
[CrossRef]

J. V. Foltz, D. H. Rank, and T. A. Wiggins, J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

D. H. Rank, R. V. Wick, and T. A. Wiggins, Appl. Opt. 5, 131 (1966).
[CrossRef] [PubMed]

T. A. Wiggins, R. V. Wick, D. H. Rank, and A. H. Guenther, Appl. Opt. 4, 1203 (1965).
[CrossRef]

Rieckhoff, K. E.

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

Starunov, V. S.

D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).

Townes, C. H.

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 84 (1964).
[CrossRef]

Wick, R. V.

Wiggins, T. A.

N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
[CrossRef]

T. A. Wiggins, R. V. Wick, N. D. Foltz, C. W. Cho, and D. H. Rank, J. Opt. Soc. Am. 57, 661 (1967).
[CrossRef]

R. V. Wick, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 17, 466 (1966).
[CrossRef]

D. H. Rank, T. A. Wiggins, R. V. Wick, D. P. Eastman, and A. H. Guenther, J. Opt. Soc. Am. 56, 174 (1966).
[CrossRef]

D. P. Eastman, T. A. Wiggins, and D. H. Rank, Appl. Opt. 5, 879 (1966).
[CrossRef] [PubMed]

J. V. Foltz, D. H. Rank, and T. A. Wiggins, J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

D. H. Rank, R. V. Wick, and T. A. Wiggins, Appl. Opt. 5, 131 (1966).
[CrossRef] [PubMed]

T. A. Wiggins, R. V. Wick, D. H. Rank, and A. H. Guenther, Appl. Opt. 4, 1203 (1965).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Letters (2)

E. Garmire and C. H. Townes, Appl. Phys. Letters 5, 84 (1964).
[CrossRef]

E. E. Hagenlocher and W. G. Rado, Appl. Phys. Letters 7, 236 (1965).
[CrossRef]

J. Mol. Spectrosc. (1)

J. V. Foltz, D. H. Rank, and T. A. Wiggins, J. Mol. Spectrosc. 21, 203 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

Phys. Rev. (2)

N. D. Foltz, C. W. Cho, D. H. Rank, and T. A. Wiggins, Phys. Rev. 165, 396 (1968).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. 175, 271 (1968).
[CrossRef]

Phys. Rev. Letters (5)

R. M. Herman and M. A. Gray, Phys. Rev. Letters 19, 824 (1967).
[CrossRef]

D. H. Rank, C. W. Cho, N. D. Foltz, and T. A. Wiggins, Phys. Rev. Letters 19, 828 (1967).
[CrossRef]

C. W. Cho, N. D. Foltz, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 18, 107 (1967).
[CrossRef]

R. G. Brewer and K. E. Rieckhoff, Phys. Rev. Letters 13, 334a (1964).
[CrossRef]

R. V. Wick, D. H. Rank, and T. A. Wiggins, Phys. Rev. Letters 17, 466 (1966).
[CrossRef]

Zh. Eksperim. Teor. Fiz. Pis. (1)

D. I. Mash, V. V. Morozov, V. S. Starunov, and I. L. Fabelinskii, Zh. Eksperim. Teor. Fiz. Pis. 2, 41 (1965). Translation, JETP Letters 2, 25 (1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental arrangement to observe reamplified pulses and detect the multiple Brillouin scattering.

Fig. 2
Fig. 2

Output power of a ruby laser as a function of time, showing the original laser pulse and two reamplified pulses that were backscattered from a CS2 cell placed 4 m from the laser.

Fig. 3
Fig. 3

Reproduction of a microphotometer trace of the first Stokes line of Sn35Cl337Cl1. Resolving power over 300 000 and plate dispersion 0.5 cm−1/mm. We have indicated contours and positions of the lines expected for Sn35Cl4 (line 1) and Sn35Cl237Cl2 (line 3) by means of the broken curves.

Fig. 4
Fig. 4

Spontaneous Brillouin effect in N2 gas at 184 amagat. The Rayleigh line is strong because of difficulty in removing dust from the gas.

Fig. 5
Fig. 5

Stimulated Stokes and anti-Stokes components observed with a high-resolution spectrograph in liquids and liquid mixtures: A, CS2; B, CCl4; A + B, 50–50 mixture of CS2 and CCl4; C, glycerol; D, water; C + D, 50–50 mixture of glycerol and water. The bottom section of spectrum B shows the unshifted laser line. The Stokes and anti-Stokes shifted components are to the right and to the left of the laser line, respectively.

Fig. 6
Fig. 6

Reproduction of some stimulated Brillouin or “optical mixing” spectra of some liquids and glasses. I, aniline; J, p xylene; K, O nitrotoluene; L, m nitrotoluene; M, nitrobenzene; N, toluene; O, pyridine; P, borosilicate crown glass; Q, dense flint glass, R, octanol; S, acetone; T, methanol; U, acetic acid; V, methylene iodide.

Fig. 7
Fig. 7

Block diagram of the optical system used. The liquid cell is 10 cm long and the focal length of the lenses was 10 cm. The distance from the laser to the liquid cell was 3 m.

Fig. 8
Fig. 8

High-resolution spectra of the forward-scattered radiation from m nitrotoluene for several settings of the Kerr cell in the incident beam. The upper series uses an analyzer with its axis parallel to the plane of polarization of the incident light on the Kerr cell; the lower series of photographs has an analyzer at 90°. The line on the left in each spectrum is due to the incident light, the one on the right is the stimulated Brillouin line, displaced in this case by 0.23 cm−1. The central line, which appears most intensely in circularly polarized incident light, is the stimulated Rayleigh line.

Fig. 9
Fig. 9

Stimulated Rayleigh–Stokes lines in nitrobenzene at three temperatures: (A) 12°C; (B) 16°C; (C) 31°C. The line at the left in each spectrum is the incident laser light; the second line is the stimulated Brillouin light. The fourth component, which is weak, is at the Brillouin shift away from the stimulated Rayleigh line.

Fig. 10
Fig. 10

Plot of the frequency shift of the stimulated Rayleigh line in nitrobenzene as a function of the ratio if T/η, where η is the viscosity for the range T = 285 to 304 K.

Fig. 11
Fig. 11

Interferogram using 101-mm plate spacing on the Fabry–Perot étalon, showing the incident and backscattered light from ethylene glycol with iodine added to produce an absorption coefficient of 0.045 cm−1. The darker quadrants are due to the incident laser light. The sharp rings in the lighter quadrants are due to the anti-Stokes-shifted stimulated thermal Rayleigh scattering.