Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Bryngdahl and A. Lohmann, J. Opt. Soc. Am. 58, 141 (1968).
    [Crossref]
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 235.
  3. F. Bestenreiner and R. Deml, Optik 28, 263 (1968/69).
  4. L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

1968 (1)

1960 (1)

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

Bestenreiner, F.

F. Bestenreiner and R. Deml, Optik 28, 263 (1968/69).

Bryngdahl, O.

Cutrona, L. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

Deml, R.

F. Bestenreiner and R. Deml, Optik 28, 263 (1968/69).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 235.

Leith, E. N.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

Lohmann, A.

Palermo, C. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

Porcello, L. J.

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

IRE Trans. (1)

L. J. Cutrona, E. N. Leith, C. J. Palermo, and L. J. Porcello, IRE Trans. IT-6, 386 (1960).

J. Opt. Soc. Am. (1)

Optik (1)

F. Bestenreiner and R. Deml, Optik 28, 263 (1968/69).

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw–Hill, New York, 1968), p. 235.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Photometric pictures obtained from a direct photograph of the plasma. Left to right: top, order number ν = 1, 2, 3; bottom, order number ν =4, 5, 6.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I ( x , y ) = A ( x , y ) { 1 + K cos [ 2 π α x + ϕ ( x , y ) ] } ,
τ ( x , y ) = 1 π arccos ( 1 - A A ) + ν = 1 2 π ν sin [ ν arccos ( 1 - A A ) ] · cos [ 2 π ν α x - ν ϕ ( x , y ) ] ,