Abstract

A 600-keV heavy-ion accelerator equipped with a universal ion source and a magnet capable of separating masses up to uranium was used for beam-foil studies together with a target chamber constructed to fulfill the demands for ion velocities in the energy range of 60–600 keV. The mean lives for singlets and multiplets of Al i through Al iii in the wavelength range 1700–5000 Å are reported. The evaluated mean lives of the 4s 2S and 3d 2D states in Al i agree within 10% with earlier experimental results obtained by the phase-shift method and the level-crossing technique.

© 1969 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Proceedings of the Conference on Beam Foil Spectroscopy, S. Bashkin, Ed. (Gordon and Breach, New York, 1968).
  2. T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Letters 28A, 459 (1968).
  3. I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).
  4. S. Bashkin, W. S. Bickel, H. D. Dieselman, and J. B. Schroeder, J. Opt. Soc. Am. 57, 1395 (1967).
    [Crossref]
  5. W. Demtröder, Z. Physik 166, 42 (1962).
    [Crossref]
  6. P. T. Cunningham, J. Opt. Soc. Am. 58, 1507 (1968).
    [Crossref]
  7. B. Budick, Colloq. Intern. Centre Natl. Rech. Sci. (Paris) 164, 185 (1966).
  8. N. J. Felici, Elektrostatische Hochspannungs Generatoren (Braun, Karlsruhe, 1957), p. 83.
  9. K. O. Nielsen, Nucl. Instr. 1, 289 (1957).
    [Crossref]
  10. J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14, 1 (1963).
  11. N. P. Penkin and L. N. Shabanova, Opt. Spectry (USSR) 18, 504 (1965).

1969 (1)

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

1968 (2)

T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Letters 28A, 459 (1968).

P. T. Cunningham, J. Opt. Soc. Am. 58, 1507 (1968).
[Crossref]

1967 (1)

1966 (1)

B. Budick, Colloq. Intern. Centre Natl. Rech. Sci. (Paris) 164, 185 (1966).

1965 (1)

N. P. Penkin and L. N. Shabanova, Opt. Spectry (USSR) 18, 504 (1965).

1963 (1)

J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14, 1 (1963).

1962 (1)

W. Demtröder, Z. Physik 166, 42 (1962).
[Crossref]

1957 (1)

K. O. Nielsen, Nucl. Instr. 1, 289 (1957).
[Crossref]

Andersen, T.

T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Letters 28A, 459 (1968).

Bashkin, S.

Bergström, I.

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

Bickel, W. S.

Bromander, J.

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

Buchta, R.

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

Budick, B.

B. Budick, Colloq. Intern. Centre Natl. Rech. Sci. (Paris) 164, 185 (1966).

Cunningham, P. T.

Demtröder, W.

W. Demtröder, Z. Physik 166, 42 (1962).
[Crossref]

Dieselman, H. D.

Felici, N. J.

N. J. Felici, Elektrostatische Hochspannungs Generatoren (Braun, Karlsruhe, 1957), p. 83.

Jessen, K. A.

T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Letters 28A, 459 (1968).

Lindhard, J.

J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14, 1 (1963).

Lundin, L.

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

Martinson, I.

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

Nielsen, K. O.

K. O. Nielsen, Nucl. Instr. 1, 289 (1957).
[Crossref]

Penkin, N. P.

N. P. Penkin and L. N. Shabanova, Opt. Spectry (USSR) 18, 504 (1965).

Scharff, M.

J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14, 1 (1963).

Schiøtt, H. E.

J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14, 1 (1963).

Schroeder, J. B.

Shabanova, L. N.

N. P. Penkin and L. N. Shabanova, Opt. Spectry (USSR) 18, 504 (1965).

Sørensen, G.

T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Letters 28A, 459 (1968).

Colloq. Intern. Centre Natl. Rech. Sci. (Paris) (1)

B. Budick, Colloq. Intern. Centre Natl. Rech. Sci. (Paris) 164, 185 (1966).

J. Opt. Soc. Am. (2)

Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. (1)

J. Lindhard, M. Scharff, and H. E. Schiøtt, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 33, No. 14, 1 (1963).

Nucl. Instr. (1)

K. O. Nielsen, Nucl. Instr. 1, 289 (1957).
[Crossref]

Opt. Spectry (USSR) (1)

N. P. Penkin and L. N. Shabanova, Opt. Spectry (USSR) 18, 504 (1965).

Phys. Letters (2)

T. Andersen, K. A. Jessen, and G. Sørensen, Phys. Letters 28A, 459 (1968).

I. Bergström, J. Bromander, R. Buchta, L. Lundin, and I. Martinson, Phys. Letters 28A, 721 (1969).

Z. Physik (1)

W. Demtröder, Z. Physik 166, 42 (1962).
[Crossref]

Other (2)

Proceedings of the Conference on Beam Foil Spectroscopy, S. Bashkin, Ed. (Gordon and Breach, New York, 1968).

N. J. Felici, Elektrostatische Hochspannungs Generatoren (Braun, Karlsruhe, 1957), p. 83.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Beam-foil apparatus, composed of three sections (I, II, and III). Knobs (1) vary the foil distance (y) from the observation line and change foils. A wheel (2) for six exciter foils is mounted on the movable beam tube. Three valves (3) separate the vacuum chamber from the diffusion pump. A movable Faraday cup (4) is used for beam alignment. The unmarked arrow points toward the diffusion pump (not shown).

Fig. 2
Fig. 2

Emission spectra in the range 3550–4550 Å, viewed near the intersection of the exciter foil and Al+ beam for two initial ion energies, A: 100 keV, B: 300 keV. Spectrum A was recorded using a 1200 lines/mm grating, spectrum B with a 2400 lines/mm grating.

Fig. 3
Fig. 3

Relative intensity of 3092 (upper part) and 3961 Å (lower part) vs foil position in mm downstream from 2 μg/cm2 exciter foil for the levels Al i 3d 2D and Al i 4s 2S. The data for 3092 Å were obtained with a 300 keV Al+ beam, τ(3d 2D) = (13.4±0.3)×10−9 sec. The data for 3961 Å were obtained with a 100 keV Al+ beam, τ(4s 2S) = (6.4±0.4)×10−9 sec.

Fig. 4
Fig. 4

Energy levels in Al i and Al iii, showing transitions studied, with wavelengths indicated in Å.

Tables (3)

Tables Icon

Table I Spectral lines of aluminum.

Tables Icon

Table II Mean lives of states of Al i.

Tables Icon

Table III Mean lives of states of Al ii and Al iii.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f n m = 1.499 λ m n 2 A m n g m / g n , τ m = 1 / n A m n ,