Abstract

New grating and interferometric measurements of the first emission spectrum of lead have been made using electrodeless discharge tubes containing halides of 208Pb. In the spectral region from 1977 to 12561 Å, 370 classified lines were measured, of which 90 are new. Nineteen new even levels and four new odd levels have been established; the classifications of nine levels have been changed to different electron configurations. The lower series limit of lead was determined from three Rydberg series to be 59819.4 ± 0.3 cm−1, and the separation of the two limits, 14081.074 ± 0.004 cm−1, was measured directly from the forbidden Pb ii transition, 6pP1226pP322.

A series of hydrogenic levels observed by Gieseler and Grotrian in 1925 but omitted from AEL was confirmed for n = 5 to 9 and extended to n = 10. We have identified this as the 6png1/2[7/2]3 series of levels, the observed lines being forbidden Δl = 3 transitions to the J = 2 members of the 6p2 and 6p7p configurations. This is believed to be the first ng series identified in a two-electron neutral spectrum. In addition to the formerly observed even-even forbidden transitions between individual members of the 6p2 ground configuration, we also observed such transitions to 6p2 from 6p7p and 6p5f levels.

© 1968 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467, III (1958).
  2. H. Giesseler and W. Grotrian, Z. Physik. 34, 374 (1925); Z. Physik. 39, 377 (1926).
    [CrossRef]
  3. W. R. S. Garton and M. Wilson, Proc. Phys. Soc. (London) 87, 841 (1966).
    [CrossRef]
  4. L. J. Radziemski and K. L. Andrew, J. Opt. Soc. Am. 55, 474 (1965).
    [CrossRef]
  5. V. Kaufman and K. L. Andrew, J. Opt. Soc. Am. 52, 1223 (1962).
    [CrossRef]
  6. W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 69A, 109 (1965).
    [CrossRef]
  7. American Institute of Physics Handbook (McGraw-Hill Book Co., New York, 1957), Table 7g-6.
  8. V. Kaufman, J. Opt. Soc. Am. 52, 866 (1962).
    [CrossRef]
  9. S. Emara, J. Res. Natl. Bur. Std. (U. S.) 65A, 473 (1961).
    [CrossRef]
  10. R. M. Langer, Phys. Rev. 35, 649 (1930).
    [CrossRef]
  11. H. E. Clearman, J. Opt. Soc. Am. 42, 373 (1952).
    [CrossRef]
  12. R. D. Cowan, Phys. Rev. 163, 54 (1967).
    [CrossRef]
  13. R. D. Cowan and K. L. Andrew, J. Opt. Soc. Am. 55, 502 (1965).
    [CrossRef]
  14. F. A. Jenkins and S. Mrozowski, Pliys. Rev. 59, 808 (1941).

1967 (1)

R. D. Cowan, Phys. Rev. 163, 54 (1967).
[CrossRef]

1966 (1)

W. R. S. Garton and M. Wilson, Proc. Phys. Soc. (London) 87, 841 (1966).
[CrossRef]

1965 (3)

1962 (2)

1961 (1)

S. Emara, J. Res. Natl. Bur. Std. (U. S.) 65A, 473 (1961).
[CrossRef]

1952 (1)

1941 (1)

F. A. Jenkins and S. Mrozowski, Pliys. Rev. 59, 808 (1941).

1930 (1)

R. M. Langer, Phys. Rev. 35, 649 (1930).
[CrossRef]

1925 (1)

H. Giesseler and W. Grotrian, Z. Physik. 34, 374 (1925); Z. Physik. 39, 377 (1926).
[CrossRef]

Andrew, K. L.

Clearman, H. E.

Cowan, R. D.

Emara, S.

S. Emara, J. Res. Natl. Bur. Std. (U. S.) 65A, 473 (1961).
[CrossRef]

Garton, W. R. S.

W. R. S. Garton and M. Wilson, Proc. Phys. Soc. (London) 87, 841 (1966).
[CrossRef]

Giesseler, H.

H. Giesseler and W. Grotrian, Z. Physik. 34, 374 (1925); Z. Physik. 39, 377 (1926).
[CrossRef]

Grotrian, W.

H. Giesseler and W. Grotrian, Z. Physik. 34, 374 (1925); Z. Physik. 39, 377 (1926).
[CrossRef]

Jenkins, F. A.

F. A. Jenkins and S. Mrozowski, Pliys. Rev. 59, 808 (1941).

Kaufman, V.

Langer, R. M.

R. M. Langer, Phys. Rev. 35, 649 (1930).
[CrossRef]

Meggers, W. F.

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 69A, 109 (1965).
[CrossRef]

Moore, C. E.

C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467, III (1958).

Mrozowski, S.

F. A. Jenkins and S. Mrozowski, Pliys. Rev. 59, 808 (1941).

Radziemski, L. J.

Stanley, R. W.

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 69A, 109 (1965).
[CrossRef]

Wilson, M.

W. R. S. Garton and M. Wilson, Proc. Phys. Soc. (London) 87, 841 (1966).
[CrossRef]

J. Opt. Soc. Am. (5)

J. Res. Natl. Bur. Std. (U. S.) (2)

S. Emara, J. Res. Natl. Bur. Std. (U. S.) 65A, 473 (1961).
[CrossRef]

W. F. Meggers and R. W. Stanley, J. Res. Natl. Bur. Std. (U. S.) 69A, 109 (1965).
[CrossRef]

Phys. Rev. (2)

R. M. Langer, Phys. Rev. 35, 649 (1930).
[CrossRef]

R. D. Cowan, Phys. Rev. 163, 54 (1967).
[CrossRef]

Pliys. Rev. (1)

F. A. Jenkins and S. Mrozowski, Pliys. Rev. 59, 808 (1941).

Proc. Phys. Soc. (London) (1)

W. R. S. Garton and M. Wilson, Proc. Phys. Soc. (London) 87, 841 (1966).
[CrossRef]

Z. Physik. (1)

H. Giesseler and W. Grotrian, Z. Physik. 34, 374 (1925); Z. Physik. 39, 377 (1926).
[CrossRef]

Other (2)

C. E. Moore, Natl. Bur. Std. (U. S.) Circ. No. 467, III (1958).

American Institute of Physics Handbook (McGraw-Hill Book Co., New York, 1957), Table 7g-6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Quantum defects of the 6pnf and 6png series as functions of the level value. The positions of two perturbing 6p7p levels with J = 2, 3 are indicated by arrows.

Fig. 2
Fig. 2

Quantum defects of the 6pnp series as functions of the level value. The positions of four perturbing 6 p 7 p ( j 1 = 3 2 ) levels are indicated by arrows.

Fig. 3
Fig. 3

Quantum defects of the 6pns series as functions of the level value. The position of the perturbing level, 6 p 7 s ( 3 2 , 1 2 ) 1, is shown by an arrow.

Fig. 4
Fig. 4

Quantum defects of the 6pnd series as functions of the level value. The positions of the perturbing levels, 6 p 7 s ( 3 2 , 1 2 ) 1 , 6 p 6 s 3 2 [ 5 2 ] 2 and 3 2 [ 7 2 ] 3 are shown by the arrows.

Fig. 5
Fig. 5

Example of fitting the Russell-Shenstone formula ⊙ to the experimental quantum defects + of a highly perturbed series, 6 p n p ( 1 2 , 3 2 ) 1. The configuration-interaction parameters corresponding to the two perturbing levels T1 and T2 are α1 = 10 cm−1 and α2 = 3 cm−1. The dashed line, following points ⊡ calculated from the extended Ritz portion of the formula, represents the unperturbed quantum-defect curve.

Tables (6)

Tables Icon

Table I Description of PbI.

Tables Icon

Table II Infrared measurements of Humphreys.

Tables Icon

Table III Even energy levels.

Tables Icon

Table IV Odd energy levels.

Tables Icon

Table V Average purity (%) of eigenvectors in the four representations.

Tables Icon

Table VI Forbidden even-even transitions in PbI.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

δ n = a + b T n + c T n 2 + + α 1 / ( T n T 1 ) + α 2 / ( T n T 2 ) .
H n = ( 2 α R / n * 3 ) 1 2 ,
Δ l 2 = 0 , ± 2 Δ J = 0 , ± 1 , ± 2 J + J 2.
Δ l 2 = 0 Δ n 2 = 0 Δ J = ± 1 J + J 1.