Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. N. Grechushnikov, G. D. Shnyrev, and I. P. Petrov, Opt. Spectry. (USSR) 18, 66 (1965).
  2. W. H. Steel and L. Mertz, Opt. Spectry. (USSR) 20, 503 (1966).
  3. B. N. Grechushnikov, I. P. Petrov, and G. D. Shnyrev, Opt. Spectry. (USSR) 21, 82 (1966).
  4. B. Lyot, Ann. Astrophys. 7, 31 (1944).
  5. J. W. Evans, J. Opt. Soc. Am. 39, 229 (1949).
    [CrossRef]
  6. E. R. Peck, J. Opt. Soc. Am. 45, 931 (1955).
    [CrossRef]
  7. J. E. Stewart, Appl. Opt. 6, 1523 (1967).
    [CrossRef] [PubMed]

1967 (1)

1966 (2)

W. H. Steel and L. Mertz, Opt. Spectry. (USSR) 20, 503 (1966).

B. N. Grechushnikov, I. P. Petrov, and G. D. Shnyrev, Opt. Spectry. (USSR) 21, 82 (1966).

1965 (1)

B. N. Grechushnikov, G. D. Shnyrev, and I. P. Petrov, Opt. Spectry. (USSR) 18, 66 (1965).

1955 (1)

1949 (1)

1944 (1)

B. Lyot, Ann. Astrophys. 7, 31 (1944).

Evans, J. W.

Grechushnikov, B. N.

B. N. Grechushnikov, I. P. Petrov, and G. D. Shnyrev, Opt. Spectry. (USSR) 21, 82 (1966).

B. N. Grechushnikov, G. D. Shnyrev, and I. P. Petrov, Opt. Spectry. (USSR) 18, 66 (1965).

Lyot, B.

B. Lyot, Ann. Astrophys. 7, 31 (1944).

Mertz, L.

W. H. Steel and L. Mertz, Opt. Spectry. (USSR) 20, 503 (1966).

Peck, E. R.

Petrov, I. P.

B. N. Grechushnikov, I. P. Petrov, and G. D. Shnyrev, Opt. Spectry. (USSR) 21, 82 (1966).

B. N. Grechushnikov, G. D. Shnyrev, and I. P. Petrov, Opt. Spectry. (USSR) 18, 66 (1965).

Shnyrev, G. D.

B. N. Grechushnikov, I. P. Petrov, and G. D. Shnyrev, Opt. Spectry. (USSR) 21, 82 (1966).

B. N. Grechushnikov, G. D. Shnyrev, and I. P. Petrov, Opt. Spectry. (USSR) 18, 66 (1965).

Steel, W. H.

W. H. Steel and L. Mertz, Opt. Spectry. (USSR) 20, 503 (1966).

Stewart, J. E.

Ann. Astrophys. (1)

B. Lyot, Ann. Astrophys. 7, 31 (1944).

Appl. Opt. (1)

J. Opt. Soc. Am. (2)

Opt. Spectry. (USSR) (3)

B. N. Grechushnikov, G. D. Shnyrev, and I. P. Petrov, Opt. Spectry. (USSR) 18, 66 (1965).

W. H. Steel and L. Mertz, Opt. Spectry. (USSR) 20, 503 (1966).

B. N. Grechushnikov, I. P. Petrov, and G. D. Shnyrev, Opt. Spectry. (USSR) 21, 82 (1966).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Interferogram fringe modulation for polarization and Michelson interferometers, z = Θ2/2n2. Polarization interferometer, circular field.Michelson interferometer, circular field; note sign change in alternate lobs.Polarization and Michelson interferometers, square field.Polarization and Michelson interferometers, slit field.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ϕ = k ν [ 1 - ( θ 2 / 2 n 0 ) ( ( cos 2 ψ / n 0 ) - ( sin 2 ψ / n c ) ) ] = k ν [ 1 + ( θ 2 / 2 n 2 ) ( ( μ / 2 n ) - cos 2 ψ ) ] ,
S ( k ) = 1 π Θ 2 0 2 π 0 Θ cos { k ν [ 1 + θ 2 2 n 2 ( μ 2 n - cos 2 ψ ) ] } θ d θ d ψ = 2 n 2 π Θ 2 0 2 π 1 μ / 2 n - cos 2 ψ [ cos k ν sin { k ν Θ 2 2 n 2 ( μ 2 n - cos 2 ψ ) } - sin k ν cos { k ν Θ 2 2 n 2 ( μ 2 n - cos 2 ψ ) } + sin k ν ] d ψ .
sin { k ν Θ 2 2 n 2 cos 2 ψ } = 2 m = 0 ( - 1 ) m J 2 m + 1 ( k ν Θ 2 2 n 2 ) cos 2 ( 2 m + 1 ) ψ
cos { k ν Θ 2 2 n 2 cos 2 ψ } = J 0 ( k ν Θ 2 2 n 2 ) + 2 m = 0 ( - 1 ) m J 2 m ( k ν Θ 2 2 n 2 ) cos 4 m ψ .
S ( k ) = 4 n 2 k ν Θ 2 m = 0 J 2 m + 1 ( k ν Θ 2 2 n 2 ) cos ( k ν - k ν Θ 2 μ 4 n 3 ) .
S ( k ) = ( sin k ν Θ 2 4 n 2 / k ν Θ 2 4 n 2 ) cos ( k ν - k ν Θ 2 4 n 2 ) .
S ( k ) = 1 f 2 Θ x Θ y 0 f Θ x 0 f Θ y cos { k ν [ 1 - 1 2 n 0 f 2 ( y 2 n 0 - x 2 n e ) ] } d x d y .
C ( z ) = 0 z cos ( π t 2 / 2 ) d t             and             S ( z ) = 0 z sin ( π t 2 / 2 ) d t .
S ( k ) = [ n 0 ( n 0 n e ) 1 2 / k ν Θ x Θ y ] [ ( C x 2 + S x 2 ) ( C y 2 + S y 2 ) ] 1 2 × cos { k ν - tan - 1 [ ( C x S y - S x C y ) / ( C x C y + S x , S y ) ] } .
S ( k ) = ( π n 0 2 / k ν Θ x 2 ) ( C x 2 + S x 2 ) cos k ν .
S ( k ) = ( π / k ν ) 1 2 ( n / Θ x ) ( C x 2 + S x 2 ) 1 2 cos [ k ν - tan - 1 ( S x / C x ) ] .
ϕ = ϕ ( k , ψ ) - ϕ [ k 0 , ψ + ( π / 2 ) ] = ( k - k 0 ) ν - ( k + k 0 ) ( ν θ 2 / 2 n 2 ) [ ( μ / 2 n ) - cos 2 ψ ] .