Abstract

The first ionization potential of O2 has been found to correspond to 1027.8±0.1 Å (12.063±0.001 eV). Previous determinations of the ionization potential are reviewed and compared with the present result. The photoionization cross section measured from threshold to 993 Å reveals vibrational structure superimposed on autoionized absorption peaks. The absorption spectrum illustrates the profuse absorption bands in the vicinity of the ionization threshold. Ionization was observed at wavelengths longer than 1027.8 Å and is explained on the basis of the formation of excited O2. From the interpretation of the results, the dissociation energy for the ground state of the ion is 6.669±0.001 eV and the electron affinity of O2 is ≥0.21 eV.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
    [Crossref]
  2. C. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1949), Vol. 1, NBS Circular 467.
  3. P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).
    [Crossref]
  4. R. S. Mulliken and D. S. Stevens, Phys. Rev. 44, 720 (1933).All energies cited from references have been corrected to conform with the energy conversion factor 1 eV=8065.73 cm−1.
    [Crossref]
  5. Q. Q. Douglas, Can. J. Phys. 30, 302 (1952).
    [Crossref]
  6. G. Herzberg (private communication, 1965).
  7. R. S. Mulliken (private communication, 1965).
  8. D. S. Stevens, Phys. Rev. 38, 1292 (1931).
    [Crossref]
  9. J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).
    [Crossref]
  10. H. D. Hagstrum, Rev. Mod. Phys. 23, 185 (1951).
    [Crossref]
  11. C. E. Brion, J. Chem. Phys. 40, 2995 (1964).
    [Crossref]
  12. J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
    [Crossref]
  13. E. C. Y. Inn, Phys. Rev. 91, 1194 (1953).
    [Crossref]
  14. K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
    [Crossref]
  15. A. J. C. Nicholson, J. Chem. Phys. 39, 954 (1963).
    [Crossref]
  16. J. A. R. Samson, J. Opt. Soc. Am. 54, 6 (1964).
    [Crossref]
  17. W. R. S. Garton, Rev. Sci. Instr. 36, 11 (1959).
    [Crossref]
  18. R. K. Curran, J. Chem. Phys. 38, 2974 (1963).
    [Crossref]
  19. J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
    [Crossref]
  20. D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).
    [Crossref]
  21. R. S. Mulliken, Phys. Rev. 115, 1225 (1959).
    [Crossref]
  22. H. D. Pritchard, Chem. Rev. 52, 529 (1953).
    [Crossref]
  23. M. E. Wacks, J. Chem. Phys. 41, 930 (1964).
    [Crossref]
  24. G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., New York, 1950), 2nd ed., p. 560.
  25. G. R. Cook and R. J. McNeal, Meeting Opt. Soc. Am. (March1966).
  26. R. B. Cairns and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).
    [Crossref]
  27. S. N. Foner and R. L. Hudson, J. Chem. Phys. 25, 601 (1956).
    [Crossref]

1966 (2)

J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
[Crossref]

G. R. Cook and R. J. McNeal, Meeting Opt. Soc. Am. (March1966).

1965 (1)

R. B. Cairns and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).
[Crossref]

1964 (4)

M. E. Wacks, J. Chem. Phys. 41, 930 (1964).
[Crossref]

J. A. R. Samson, J. Opt. Soc. Am. 54, 6 (1964).
[Crossref]

C. E. Brion, J. Chem. Phys. 40, 2995 (1964).
[Crossref]

J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
[Crossref]

1963 (2)

A. J. C. Nicholson, J. Chem. Phys. 39, 954 (1963).
[Crossref]

R. K. Curran, J. Chem. Phys. 38, 2974 (1963).
[Crossref]

1959 (2)

W. R. S. Garton, Rev. Sci. Instr. 36, 11 (1959).
[Crossref]

R. S. Mulliken, Phys. Rev. 115, 1225 (1959).
[Crossref]

1958 (1)

D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).
[Crossref]

1956 (2)

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[Crossref]

S. N. Foner and R. L. Hudson, J. Chem. Phys. 25, 601 (1956).
[Crossref]

1954 (1)

P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).
[Crossref]

1953 (2)

E. C. Y. Inn, Phys. Rev. 91, 1194 (1953).
[Crossref]

H. D. Pritchard, Chem. Rev. 52, 529 (1953).
[Crossref]

1952 (1)

Q. Q. Douglas, Can. J. Phys. 30, 302 (1952).
[Crossref]

1951 (1)

H. D. Hagstrum, Rev. Mod. Phys. 23, 185 (1951).
[Crossref]

1935 (1)

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

1933 (1)

R. S. Mulliken and D. S. Stevens, Phys. Rev. 44, 720 (1933).All energies cited from references have been corrected to conform with the energy conversion factor 1 eV=8065.73 cm−1.
[Crossref]

1932 (1)

J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).
[Crossref]

1931 (1)

D. S. Stevens, Phys. Rev. 38, 1292 (1931).
[Crossref]

Branscomb, L. M.

D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).
[Crossref]

Brion, C. E.

C. E. Brion, J. Chem. Phys. 40, 2995 (1964).
[Crossref]

Brix, P.

P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).
[Crossref]

Burch, D. S.

D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).
[Crossref]

Cairns, R. B.

R. B. Cairns and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).
[Crossref]

Clarke, E. M.

J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
[Crossref]

Collins, G.

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

Cook, G. R.

G. R. Cook and R. J. McNeal, Meeting Opt. Soc. Am. (March1966).

Curran, R. K.

R. K. Curran, J. Chem. Phys. 38, 2974 (1963).
[Crossref]

Douglas, Q. Q.

Q. Q. Douglas, Can. J. Phys. 30, 302 (1952).
[Crossref]

Foner, S. N.

S. N. Foner and R. L. Hudson, J. Chem. Phys. 25, 601 (1956).
[Crossref]

Garton, W. R. S.

W. R. S. Garton, Rev. Sci. Instr. 36, 11 (1959).
[Crossref]

Hagstrum, H. D.

H. D. Hagstrum, Rev. Mod. Phys. 23, 185 (1951).
[Crossref]

Hanson, H. P.

J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
[Crossref]

Herzberg, G.

P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).
[Crossref]

G. Herzberg (private communication, 1965).

G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., New York, 1950), 2nd ed., p. 560.

Hudson, R. L.

S. N. Foner and R. L. Hudson, J. Chem. Phys. 25, 601 (1956).
[Crossref]

Inn, E. C. Y.

E. C. Y. Inn, Phys. Rev. 91, 1194 (1953).
[Crossref]

Marmo, F. F.

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[Crossref]

McGowan, J. W.

J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
[Crossref]

McNeal, R. J.

G. R. Cook and R. J. McNeal, Meeting Opt. Soc. Am. (March1966).

Moore, C.

C. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1949), Vol. 1, NBS Circular 467.

Mulliken, R. S.

R. S. Mulliken, Phys. Rev. 115, 1225 (1959).
[Crossref]

R. S. Mulliken and D. S. Stevens, Phys. Rev. 44, 720 (1933).All energies cited from references have been corrected to conform with the energy conversion factor 1 eV=8065.73 cm−1.
[Crossref]

R. S. Mulliken (private communication, 1965).

Nicholson, A. J. C.

A. J. C. Nicholson, J. Chem. Phys. 39, 954 (1963).
[Crossref]

Pack, J. L.

J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
[Crossref]

Phelps, A. V.

J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
[Crossref]

Price, W. C.

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

Pritchard, H. D.

H. D. Pritchard, Chem. Rev. 52, 529 (1953).
[Crossref]

Samson, J. A. R.

R. B. Cairns and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).
[Crossref]

J. A. R. Samson, J. Opt. Soc. Am. 54, 6 (1964).
[Crossref]

Smith, P. T.

J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).
[Crossref]

Smith, S. J.

D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).
[Crossref]

Stebbings, R. F.

J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
[Crossref]

Stevens, D. S.

R. S. Mulliken and D. S. Stevens, Phys. Rev. 44, 720 (1933).All energies cited from references have been corrected to conform with the energy conversion factor 1 eV=8065.73 cm−1.
[Crossref]

D. S. Stevens, Phys. Rev. 38, 1292 (1931).
[Crossref]

Tate, J. T.

J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).
[Crossref]

Wacks, M. E.

M. E. Wacks, J. Chem. Phys. 41, 930 (1964).
[Crossref]

Watanabe, K.

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[Crossref]

Can. J. Phys. (2)

P. Brix and G. Herzberg, Can. J. Phys. 32, 110 (1954).
[Crossref]

Q. Q. Douglas, Can. J. Phys. 30, 302 (1952).
[Crossref]

Chem. Rev. (1)

H. D. Pritchard, Chem. Rev. 52, 529 (1953).
[Crossref]

J. Chem. Phys. (7)

M. E. Wacks, J. Chem. Phys. 41, 930 (1964).
[Crossref]

C. E. Brion, J. Chem. Phys. 40, 2995 (1964).
[Crossref]

S. N. Foner and R. L. Hudson, J. Chem. Phys. 25, 601 (1956).
[Crossref]

K. Watanabe and F. F. Marmo, J. Chem. Phys. 25, 965 (1956).
[Crossref]

A. J. C. Nicholson, J. Chem. Phys. 39, 954 (1963).
[Crossref]

R. K. Curran, J. Chem. Phys. 38, 2974 (1963).
[Crossref]

J. L. Pack and A. V. Phelps, J. Chem. Phys. 44, 1870 (1966).
[Crossref]

J. Opt. Soc. Am. (1)

Meeting Opt. Soc. Am. (1)

G. R. Cook and R. J. McNeal, Meeting Opt. Soc. Am. (March1966).

Phys. Rev. (8)

R. B. Cairns and J. A. R. Samson, Phys. Rev. 139, A1403 (1965).
[Crossref]

E. C. Y. Inn, Phys. Rev. 91, 1194 (1953).
[Crossref]

D. S. Burch, S. J. Smith, and L. M. Branscomb, Phys. Rev. 112, 171 (1958).
[Crossref]

R. S. Mulliken, Phys. Rev. 115, 1225 (1959).
[Crossref]

D. S. Stevens, Phys. Rev. 38, 1292 (1931).
[Crossref]

J. T. Tate and P. T. Smith, Phys. Rev. 39, 270 (1932).
[Crossref]

R. S. Mulliken and D. S. Stevens, Phys. Rev. 44, 720 (1933).All energies cited from references have been corrected to conform with the energy conversion factor 1 eV=8065.73 cm−1.
[Crossref]

W. C. Price and G. Collins, Phys. Rev. 48, 714 (1935).
[Crossref]

Phys. Rev. Letters (1)

J. W. McGowan, E. M. Clarke, H. P. Hanson, and R. F. Stebbings, Phys. Rev. Letters 13, 620 (1964).
[Crossref]

Rev. Mod. Phys. (1)

H. D. Hagstrum, Rev. Mod. Phys. 23, 185 (1951).
[Crossref]

Rev. Sci. Instr. (1)

W. R. S. Garton, Rev. Sci. Instr. 36, 11 (1959).
[Crossref]

Other (4)

G. Herzberg (private communication, 1965).

R. S. Mulliken (private communication, 1965).

C. Moore, Atomic Energy Levels (U. S. Government Printing Office, Washington, D. C., 1949), Vol. 1, NBS Circular 467.

G. Herzberg, Spectra of Diatomic Molecules (D. Van Nostrand Co., Inc., New York, 1950), 2nd ed., p. 560.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

F. 1
F. 1

Photoionization cross section of O2 as a function of wavelength. For wavelengths longer than 1028.4 Å, the photoionization cross sections were pressure dependent.

F. 2
F. 2

Photoionization cross section of O2 between 990 and 1030Å. The dotted line represents the ionization continuum as obtained from Franck–Condon factors. (1 mb = 10−18 cm2.)

F. 3
F. 3

Absorption spectrum of O2 between 987 and 1075 Å, showing the positions of the first three vibrational levels for the ground state of the ion at 1027.8, 1008.7, and 990.6 Å. These values are based upon the identification of the (1,0) vibrational level.

F. 4
F. 4

Photoionization yield of O2 at 1031.9 Å as a function of pressure.

F. 5
F. 5

Ion chamber suitable for measurements at low temperature.

F. 6
F. 6

Low-pressure photoionization experiment showing the arrangement of electron multiplier, gas jet, and photon beam.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I P ( O 2 ³ g ) = I P ( O ³ P ) + D 0 ( O 2 ³ g ) D 0 ( O 2 + ² Π g )
O 2 + h ν O 2 *
O 2 * + O 2 O 4 + + e
O 2 * + O 2 O 2 + + O 2 .
γ = [ f k 1 / ( k 1 + k 2 ) ] { n / [ n + k 3 / ( k 1 + k 2 ) ] } ,
O 2 + O 2 O 4 ,
O 4 + h ν O 4 * ,
O 2 + ( a Π u ) + O 2 + O 2 O 4 + + O 2 ,
A P ( O 2 + ) = I P ( O 2 ) E a ( O 2 ) ,
I P ( ³ g ) = 12.063 ± 0.001 eV ( 1027.8 ± 0.1 Å ) . D 0 ( ² Π g ) = 6.669 ± 0.001 eV . E a 0.21 eV .
k 1 n n * + k 2 n n * + k 3 n * = f I 0 [ 1 exp ( σ n L ) ] ,
i / e = k 1 n n * ,
γ = [ f k 1 / ( k 1 + k 2 ) ] n / [ n + k 3 / ( k 1 + k 2 ) ] .