Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Sharda and P. Rajagopala Rao, Indian J. Pure Appl. Phys. 2, 269 (1964).
  2. P. Rajagopala Rao and V. S. Shah, Indian J. Pure Appl. Phys. 4, 13 (1966).
  3. Jenaer Glaswerk Schott & Gen. Inc., Mainz, Germany, Glass Catalog350E, 20, 22, 34, 38, (1957).
  4. P. Rajagopala Rao, J. Opt. Soc. Am. 55, 1032 (1965).

1966 (1)

P. Rajagopala Rao and V. S. Shah, Indian J. Pure Appl. Phys. 4, 13 (1966).

1965 (1)

1964 (1)

B. L. Sharda and P. Rajagopala Rao, Indian J. Pure Appl. Phys. 2, 269 (1964).

Rajagopala Rao, P.

P. Rajagopala Rao and V. S. Shah, Indian J. Pure Appl. Phys. 4, 13 (1966).

P. Rajagopala Rao, J. Opt. Soc. Am. 55, 1032 (1965).

B. L. Sharda and P. Rajagopala Rao, Indian J. Pure Appl. Phys. 2, 269 (1964).

Shah, V. S.

P. Rajagopala Rao and V. S. Shah, Indian J. Pure Appl. Phys. 4, 13 (1966).

Sharda, B. L.

B. L. Sharda and P. Rajagopala Rao, Indian J. Pure Appl. Phys. 2, 269 (1964).

Indian J. Pure Appl. Phys. (2)

B. L. Sharda and P. Rajagopala Rao, Indian J. Pure Appl. Phys. 2, 269 (1964).

P. Rajagopala Rao and V. S. Shah, Indian J. Pure Appl. Phys. 4, 13 (1966).

J. Opt. Soc. Am. (1)

Other (1)

Jenaer Glaswerk Schott & Gen. Inc., Mainz, Germany, Glass Catalog350E, 20, 22, 34, 38, (1957).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (2)

Tables Icon

Table I Comparison of computed reference-index values for a prism of 60° angle for typical Schott glasses.

Tables Icon

Table II Comparions of computed reference-index values for prism angles between 20° and 60° for a typical Schott glass SF 3 from Eq. (1) and Eq. (2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n m s = 1 sin ( A / 2 ) sin [ cos - 1 ( n F - n C ) sin ( A / 2 ) sin - 1 [ n F sin ( A / 2 ) ] - sin - 1 [ n C sin ( A / 2 ) ] ] .
δ F - δ C = ( t / a ) ( n F - n C ) ,
2 sin ( A / 2 ) cos { sin - 1 [ n m s sin ( A / 2 ) ] } ,