Abstract

The surface of a polycrystalline germanium film, vacuum-deposited onto a heated substrate in a narrow range of temperatures, takes on a regular structure exhibiting optical interference effects whose nature is quite sensitive to the angle at which the film is deposited. For all films deposited between 550° and 620°C, Fraunhofer diffraction effects are observed which are independent of crystalline texture. In the case of perpendicular deposition, the diffraction is nearly isotropic about the normal to the film, while in the case of deposition at an acute angle, the diffraction effects are nonisotropic and the observed optical behavior is analogous to that observed with blazed gratings; electron-microscope observations confirm these particular surfaces to be “blazed” in character. The “blue–grey” character of germanium films and the “blue haze” observed on other surfaces is explained on the basis of these results.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
    [Crossref]
  2. J. E. Davey and R. H. Deiter, Phys. Chem. Glasses 4, 213 (1963).
  3. J. E. Davey and T. Pankey, J. Appl. Phys. 36, 2571 (1965).
    [Crossref]
  4. R. E. Morrison, Phys. Rev. 124, 1314 (1961).
    [Crossref]
  5. G. Mie, Ann. Physik 25, 377 (1908).
    [Crossref]
  6. S. P. Wolsky, T. R. Piwkowski, and G. Wallis, J. Vac. Sci. Technol. 2, 97 (1965).
    [Crossref]
  7. H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1957), p. 51.
  8. L. E. Terry and J. D. Williams, J. Electrochem. Soc. 1-11, 61C (1964).
  9. L. Holland, Vacuum Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1958), p. 331.
  10. P. M. Grant, Bull. Am. Phys. Soc. 10, 1185 (1965).
  11. L. C. Andrews and R. Gereth, Solid State Electron. 9, 173 (1966).
    [Crossref]
  12. H. M. Day (private communication).
  13. E. Bauer, Z. Krist. 107, 265 (1956).
    [Crossref]
  14. J. E. Davey, J. Appl. Phys. 32, 877 (1961).
    [Crossref]
  15. R. W. Wood, Phil. Mag. 23, 310 (1912).
  16. Rayleigh, Proc. Phys. Soc. (London) A79, 399 (1907).
  17. R. P. Madden and J. Strong, in Concepts of Classical Optics, John Strong, Ed. (W. H. Freeman and Co., San Francisco, 1958).
  18. E. S. Barrekette and R. L. Christensen, IBM J. Res. Dev. 9, 108 (1965).
    [Crossref]
  19. H. A. Rowland, Phil. Mag. 35, 397 (1893).
  20. R. F. Stamm and J. J. Whalen, J. Opt. Soc. Am. 36, 2 (1946).
    [Crossref] [PubMed]
  21. R. D. Hatcher and J. H. Rohrbaugh, J. Opt. Soc. Am. 46, 104 (1956).
    [Crossref]

1966 (1)

L. C. Andrews and R. Gereth, Solid State Electron. 9, 173 (1966).
[Crossref]

1965 (4)

S. P. Wolsky, T. R. Piwkowski, and G. Wallis, J. Vac. Sci. Technol. 2, 97 (1965).
[Crossref]

J. E. Davey and T. Pankey, J. Appl. Phys. 36, 2571 (1965).
[Crossref]

E. S. Barrekette and R. L. Christensen, IBM J. Res. Dev. 9, 108 (1965).
[Crossref]

P. M. Grant, Bull. Am. Phys. Soc. 10, 1185 (1965).

1964 (1)

L. E. Terry and J. D. Williams, J. Electrochem. Soc. 1-11, 61C (1964).

1963 (2)

J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
[Crossref]

J. E. Davey and R. H. Deiter, Phys. Chem. Glasses 4, 213 (1963).

1961 (2)

R. E. Morrison, Phys. Rev. 124, 1314 (1961).
[Crossref]

J. E. Davey, J. Appl. Phys. 32, 877 (1961).
[Crossref]

1956 (2)

1946 (1)

1912 (1)

R. W. Wood, Phil. Mag. 23, 310 (1912).

1908 (1)

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

1907 (1)

Rayleigh, Proc. Phys. Soc. (London) A79, 399 (1907).

1893 (1)

H. A. Rowland, Phil. Mag. 35, 397 (1893).

Andrews, L. C.

L. C. Andrews and R. Gereth, Solid State Electron. 9, 173 (1966).
[Crossref]

Barrekette, E. S.

E. S. Barrekette and R. L. Christensen, IBM J. Res. Dev. 9, 108 (1965).
[Crossref]

Bauer, E.

E. Bauer, Z. Krist. 107, 265 (1956).
[Crossref]

Christensen, R. L.

E. S. Barrekette and R. L. Christensen, IBM J. Res. Dev. 9, 108 (1965).
[Crossref]

Davey, J. E.

J. E. Davey and T. Pankey, J. Appl. Phys. 36, 2571 (1965).
[Crossref]

J. E. Davey and R. H. Deiter, Phys. Chem. Glasses 4, 213 (1963).

J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
[Crossref]

J. E. Davey, J. Appl. Phys. 32, 877 (1961).
[Crossref]

Day, H. M.

H. M. Day (private communication).

Deiter, R. H.

J. E. Davey and R. H. Deiter, Phys. Chem. Glasses 4, 213 (1963).

Gereth, R.

L. C. Andrews and R. Gereth, Solid State Electron. 9, 173 (1966).
[Crossref]

Grant, P. M.

P. M. Grant, Bull. Am. Phys. Soc. 10, 1185 (1965).

Hatcher, R. D.

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1958), p. 331.

Madden, R. P.

R. P. Madden and J. Strong, in Concepts of Classical Optics, John Strong, Ed. (W. H. Freeman and Co., San Francisco, 1958).

Mie, G.

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

Montgomery, M. D.

J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
[Crossref]

Morrison, R. E.

R. E. Morrison, Phys. Rev. 124, 1314 (1961).
[Crossref]

Pankey, T.

J. E. Davey and T. Pankey, J. Appl. Phys. 36, 2571 (1965).
[Crossref]

J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
[Crossref]

Piwkowski, T. R.

S. P. Wolsky, T. R. Piwkowski, and G. Wallis, J. Vac. Sci. Technol. 2, 97 (1965).
[Crossref]

Rayleigh,

Rayleigh, Proc. Phys. Soc. (London) A79, 399 (1907).

Rohrbaugh, J. H.

Rowland, H. A.

H. A. Rowland, Phil. Mag. 35, 397 (1893).

Stamm, R. F.

Strong, J.

R. P. Madden and J. Strong, in Concepts of Classical Optics, John Strong, Ed. (W. H. Freeman and Co., San Francisco, 1958).

Terry, L. E.

L. E. Terry and J. D. Williams, J. Electrochem. Soc. 1-11, 61C (1964).

Tiernan, R. J.

J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
[Crossref]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1957), p. 51.

Wallis, G.

S. P. Wolsky, T. R. Piwkowski, and G. Wallis, J. Vac. Sci. Technol. 2, 97 (1965).
[Crossref]

Whalen, J. J.

Williams, J. D.

L. E. Terry and J. D. Williams, J. Electrochem. Soc. 1-11, 61C (1964).

Wolsky, S. P.

S. P. Wolsky, T. R. Piwkowski, and G. Wallis, J. Vac. Sci. Technol. 2, 97 (1965).
[Crossref]

Wood, R. W.

R. W. Wood, Phil. Mag. 23, 310 (1912).

Ann. Physik (1)

G. Mie, Ann. Physik 25, 377 (1908).
[Crossref]

Bull. Am. Phys. Soc. (1)

P. M. Grant, Bull. Am. Phys. Soc. 10, 1185 (1965).

IBM J. Res. Dev. (1)

E. S. Barrekette and R. L. Christensen, IBM J. Res. Dev. 9, 108 (1965).
[Crossref]

J. Appl. Phys. (2)

J. E. Davey, J. Appl. Phys. 32, 877 (1961).
[Crossref]

J. E. Davey and T. Pankey, J. Appl. Phys. 36, 2571 (1965).
[Crossref]

J. Electrochem. Soc. (1)

L. E. Terry and J. D. Williams, J. Electrochem. Soc. 1-11, 61C (1964).

J. Opt. Soc. Am. (2)

J. Vac. Sci. Technol. (1)

S. P. Wolsky, T. R. Piwkowski, and G. Wallis, J. Vac. Sci. Technol. 2, 97 (1965).
[Crossref]

Phil. Mag. (2)

R. W. Wood, Phil. Mag. 23, 310 (1912).

H. A. Rowland, Phil. Mag. 35, 397 (1893).

Phys. Chem. Glasses (1)

J. E. Davey and R. H. Deiter, Phys. Chem. Glasses 4, 213 (1963).

Phys. Rev. (1)

R. E. Morrison, Phys. Rev. 124, 1314 (1961).
[Crossref]

Proc. Phys. Soc. (London) (1)

Rayleigh, Proc. Phys. Soc. (London) A79, 399 (1907).

Solid State Electron. (2)

L. C. Andrews and R. Gereth, Solid State Electron. 9, 173 (1966).
[Crossref]

J. E. Davey, R. J. Tiernan, T. Pankey, and M. D. Montgomery, Solid State Electron. 6, 205 (1963).
[Crossref]

Z. Krist. (1)

E. Bauer, Z. Krist. 107, 265 (1956).
[Crossref]

Other (4)

H. C. van de Hulst, Light Scattering by Small Particles (John Wiley & Sons, Inc., New York, 1957), p. 51.

L. Holland, Vacuum Deposition of Thin Films (John Wiley & Sons, Inc., New York, 1958), p. 331.

H. M. Day (private communication).

R. P. Madden and J. Strong, in Concepts of Classical Optics, John Strong, Ed. (W. H. Freeman and Co., San Francisco, 1958).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Evaporation configuration: substrate oven (O) is 7.6 cm long and the germanium source (Ge) is 8.9 cm from the center of the oven. TC is a Pt−Pt+10% Rh thermocouple, S is a Ta shutter, W is a helical tungsten boat, and SL is a quartz sleeve. The substrate holder allows different angles of incidence during simultaneous deposition on six substrates as follows: A is 90±2° to the beam, B is 45±2° to beam, C is 10±2° to beam, and D are ≤10° to beam.

Fig. 2
Fig. 2

Diffraction observed from germanium films deposited on substrates held at normal and acute angles to the incident germanium beam, Figs. 2(a) and 2(b), respectively. Figure 2(a) relates to the optical behavior of films deposited in position A of Fig. 1, and Fig. 2(b) relates to the optical behavior of films deposited in positions B, C, and D of Fig. 1. I0 represents the direction of the incident light beam during observation, while S is a screen through which I0 passes and upon which the diffracted beam is observed. The direction of the incident germanium vapor beam during deposition is labeled by the arrows Ge. The angle θ is measured from the normal to the plane of film. Separate diffraction maxima from red to blue are always observed and are qualitatively shown. In Fig. 2(b) the arrow Id shows the quadrant in which only diffuse scattering occurs.

Fig. 3
Fig. 3

Quantitative backscattering data, measured as described in text, on a germanium film deposited perpendicularly in position A of Fig. 1. Diffraction maxima, are observed in the visible as shown by the arrows on the solid curves at the following angles: at 122° for λ=0.645 μ (■); at 124° for λ=0.570 μ ( josa-56-10-1331-i002); at 128° for λ=0.510 (▲); at 132° for λ=0.465 μ (●). The dotted curves are data measured after the sample has been rotated 90° about a normal to film for λ=0.570 μ ( josa-56-10-1331-i003) and λ=0.510 μ (△) and show the degree of anisotropy in such films. The film was deposited at 550°C. The insert shows the geometry of the optical measurements and the direction of the incident beam during deposition.

Fig. 4
Fig. 4

Quantitative backscattering data on a germanium film which was deposited at an angle of 10° (sample C in Fig. 1). The data show nonisotropic scattering with diffraction maxima appearing only in the direction in which the germanium was deposited, [cf. Fig. 2(b)] and diffuse scattering for ϕ>190°. The positions of the diffraction maxima are shown by the arrows in the figure and in the insert; the latter gives a magnified picture of the maxima. The maxima are as follows: at 158° for λ=0.465 μ (▲); at 149° for λ=0.510 μ (△); at 147° for λ=0.579 μ (●); at 145° for λ=0.645 μ (○). No backscattering data can be obtained in the angle 190°>ϕcs>170°, owing to specular reflection of the normally incident beam. B, G, Y, and R are abbreviations relating to the colors associated with those particular wavelengths.

Fig. 5
Fig. 5

Backscattering data observed in two different areas of a germanium film deposited in position D of Fig. 1. Measurements for two wavelengths are shown, for λ=0.645 μ (●) and for λ=0.465 μ (▲). The direction of the germanium beam during deposition is shown by arrow B. As shown, the data in Fig. 5(a) were measured at the end of the film closest to the source and those of Fig. 5(b) at the end farthest away from the source. Comparing the positions of the diffraction maxima, we see that the diffraction maxima of Fig. 5(b) appear at higher ϕ values (or lower θ values) than do those of Fig. 5(a). This means that the grating dimension (particle size) is largest at the end farthest away from the source, and smallest at the end of the film closest to the source. The deposition was carried out at 550°C. The insert shows the geometry of the optical measurement and the angles ϕ and θ.

Fig. 6
Fig. 6

Electronmicrograph of a film deposited at 550°C in position A of Fig. 1. (b) Electronmicrograph of a film deposited in position D of Fig. 1. The micrograph is of the end of the film nearest the Ge source during deposition. (c) Electronmicrograph of the same film as (b) but halfway between the two extreme ends of the film. (d) Electronmicrograph of the same as (b) but at the end of the film farthest from the germanium source during deposition. The films were shadowed simultaneously from the same direction as the original germanium deposition. The arrow indicates the shadowing direction.

Fig. 7
Fig. 7

Behavior of the intensity distribution function WW*π22 vs angle for λ=0.465 μ and the blaze geometry shown in the insert. The data in the insert are a=7.9×10−5 cm, b=2×10−6 cm, α1=22.5°, and α2=7.5°. A gaussian distribution of particle size for 0.79±0.20 μ is shown by the dotted curve. The solid vertical line is the observed optical diffraction maximum and the dotted vertical line is the expected position of the diffraction maxima for the blaze geometry given. If the effect of the distribution of particle size in the film is taken into account in the product of WW*π22 and the diffraction condition, the maxima as indicated by the dotted vertical line would shift toward the observed maxima, the solid vertical line.

Tables (3)

Tables Icon

Table I Particle-size determination for a germanium film deposited at 550°C, with the surface perpendicular to the deposition beam, for various wavelengths of the diffraction maxima.

Tables Icon

Table II Particle-size determination, for substrates coated simultaneously as in Fig. 1, from both optical and electron-microscope measurements. The deposition was carried out at 550°C. The optical data are average particle size for four wavelengths. The letters in the columns refer to the substrate positions in Fig. 1; for details see text.

Tables Icon

Table III Evaporation parameters and observed structural parameters associated with the formation of germanium films exhibiting optical interference effects.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n λ = a ( sin + sin θ ) .