Abstract

When a transition is of a mixed type, that is allowed for magnetic-dipole and electric-quadrupole radiation, the corresponding intensities of Zeeman components are not simply additive but are modified by interference terms which are different for different components and vary with direction of observation. The only instance in which this interference effect has been observed is the case of the transverse Zeeman effect in the line 7330 Å of Pb i (Jenkins and Mrozowski, 1941). In the present work both the transverse and the longitudinal Zeeman effects were investigated in two lines of lead using a Fabry–Perot interferometer and a three-prism spectrograph. The relative intensities of the π components of the line 7330 Å. (1D23P1) of Pb i were found to be about 20:20:10 and 38:11:2 for the transverse and longitudinal views, respectively, and for the line 7099.8 Å ( P212°-P212°) of Pb ii about 29:21 for the longitudinal view. The reproducibility of these relative intensity values was about ±10%. Using theoretical formulas developed by Gerjuoy for the Pb i line 7330 Å, good agreement between theory and experiment is obtained for 4%±1% electric-quadrupole radiation relative to total radiation intensity. For the Pb ii line 7099.8 Å the contribution of the electric-quadrupole radiation is found to be 3%±1%, the interference effect being inverted in comparison to the effect in the line 7330 Å.

© 1966 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
    [Crossref]
  2. B. Milianczuk, Bull. Polish Acad. Sci. 430 (1935).
  3. G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
    [Crossref]
  4. E. Gerjuoy, Phys. Rev. 60, 233 (1941).
    [Crossref]
  5. R. H. Garstang, J. Res. Natl. Bur. Std. 68A, 61 (1964).
    [Crossref]
  6. S. Mrozowski, Phys. Rev. 58, 1086 (1940).
    [Crossref]
  7. F. A. Jenkins and S. Mrozowski, Phys. Rev. 60, 225 (1941).
    [Crossref]
  8. M. Hults and S. Mrozowski, J. Opt. Soc. Am. 54, 855 (1964).
    [Crossref]
  9. C. Daniel Cole, J. Opt. Soc. Am. 54, 859 (1964).
    [Crossref]
  10. A. Rubinowicz, Z. Physik. 53, 267 (1929).
    [Crossref]
  11. H. C. Brinkman, “Zur Quantenmechanik der Multipolstrahlung,” Dissertation, Utrecht, 1932 (Woordhoff, Groningen).

1964 (3)

1944 (1)

S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[Crossref]

1941 (3)

G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
[Crossref]

E. Gerjuoy, Phys. Rev. 60, 233 (1941).
[Crossref]

F. A. Jenkins and S. Mrozowski, Phys. Rev. 60, 225 (1941).
[Crossref]

1940 (1)

S. Mrozowski, Phys. Rev. 58, 1086 (1940).
[Crossref]

1935 (1)

B. Milianczuk, Bull. Polish Acad. Sci. 430 (1935).

1929 (1)

A. Rubinowicz, Z. Physik. 53, 267 (1929).
[Crossref]

Aller, L. H.

G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
[Crossref]

Baker, J. G.

G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
[Crossref]

Brinkman, H. C.

H. C. Brinkman, “Zur Quantenmechanik der Multipolstrahlung,” Dissertation, Utrecht, 1932 (Woordhoff, Groningen).

Daniel Cole, C.

Garstang, R. H.

R. H. Garstang, J. Res. Natl. Bur. Std. 68A, 61 (1964).
[Crossref]

Gerjuoy, E.

E. Gerjuoy, Phys. Rev. 60, 233 (1941).
[Crossref]

Hults, M.

Jenkins, F. A.

F. A. Jenkins and S. Mrozowski, Phys. Rev. 60, 225 (1941).
[Crossref]

Menzel, D. H.

G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
[Crossref]

Milianczuk, B.

B. Milianczuk, Bull. Polish Acad. Sci. 430 (1935).

Mrozowski, S.

M. Hults and S. Mrozowski, J. Opt. Soc. Am. 54, 855 (1964).
[Crossref]

S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[Crossref]

F. A. Jenkins and S. Mrozowski, Phys. Rev. 60, 225 (1941).
[Crossref]

S. Mrozowski, Phys. Rev. 58, 1086 (1940).
[Crossref]

Rubinowicz, A.

A. Rubinowicz, Z. Physik. 53, 267 (1929).
[Crossref]

Shortley, G. H.

G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
[Crossref]

Astrophys. J. (1)

G. H. Shortley, L. H. Aller, J. G. Baker, and D. H. Menzel, Astrophys. J. 93, 178 (1941).
[Crossref]

Bull. Polish Acad. Sci. (1)

B. Milianczuk, Bull. Polish Acad. Sci. 430 (1935).

J. Opt. Soc. Am. (2)

J. Res. Natl. Bur. Std. (1)

R. H. Garstang, J. Res. Natl. Bur. Std. 68A, 61 (1964).
[Crossref]

Phys. Rev. (3)

S. Mrozowski, Phys. Rev. 58, 1086 (1940).
[Crossref]

F. A. Jenkins and S. Mrozowski, Phys. Rev. 60, 225 (1941).
[Crossref]

E. Gerjuoy, Phys. Rev. 60, 233 (1941).
[Crossref]

Rev. Mod. Phys. (1)

S. Mrozowski, Rev. Mod. Phys. 16, 153 (1944).
[Crossref]

Z. Physik. (1)

A. Rubinowicz, Z. Physik. 53, 267 (1929).
[Crossref]

Other (1)

H. C. Brinkman, “Zur Quantenmechanik der Multipolstrahlung,” Dissertation, Utrecht, 1932 (Woordhoff, Groningen).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Top view of arrangement of discharge tube (D), RF external electrodes, furnace (F), mirror (M), cooling coils (C), and magnet for observing the interference effect.

Fig. 2
Fig. 2

(a) Zeeman transitions for the line 7330 Å of Pb i (b) Zeeman pattern for the line 7330 Å assuming pure magnetic-dipole radiation. (c) Zeeman pattern for the line 7330 Å assuming pure electric-quadrupole radiation.

Fig. 3
Fig. 3

Schematic drawing of splitting of the line 7330 Å of Pb i in Zeeman effect (ΔM = ±1), and of the overlapping of components for a 14-mm Fabry–Perot separator.

Fig. 4
Fig. 4

Predicted relative intensities of π components of the line 7330 Å vs percent of EQ admixture.

Fig. 5
Fig. 5

(a) Actually observed longitudinal and transverse Zeeman effects in the line 7330 Å of Pb i at H = 5010 G as compared with predicted patterns for various percentages of admixture of EQ. (b) Actually observed longitudinal and transverse Zeeman effects in the line 7330 Å of Pb i at H = 5500 G as compared with predicted patterns for various percentages of admixture of EQ.

Fig. 6
Fig. 6

(a) Zeeman splitting of the levels for the line 7099.8 Å of Pb ii. (b) Zeeman pattern for the line 7099.8 Å assuming pure magnetic-dipole radiation. (c) Zeeman pattern for the line 7099.8 Å assuming pure electric-quadrupole radiation.

Fig. 7
Fig. 7

Predicted relative intensities of π components of he line 7099.8 Å vs percent of EQ admixture.

Fig. 8
Fig. 8

Actually observed Zeeman effect in the line 7099.8 Å of Pb ii as compared with predicted patterns for various percentages of EQ admixture. (a) longitudinal, H = 1900 G, no overlapping, (b) longitudinal, H = 5010 G, no overlapping, (c) transverse, H = 5010 G, no overlapping.