Abstract

A calorimeter in the form of a 15° cone has been constructed and evaluated for use as a “black” radiation detector. The internal surface of the cone is coated with colloidal graphite to enhance the absorptance. Spectral emissivity and reflectance measurements of the blackening material are used to estimate the effective absorptance of the conical receiver. To reduce many of the difficulties associated with a dc system, this detector is used with an ac amplifying system at a frequency of 1 cps. The spectral response of three commercial thermocouples is compared with that of the conical receiver.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Clarendon Press, Oxford, England, 1957), pp. 89–91.
  2. D. L. Stierwalt, “Infrared Spectral Emissivity of Optical Materials,” NOLC Rept. 537, U. S. Naval Ordnance Laboratory, Corona, California, January1961.
  3. L. Harris, R. T. McGinnies, and B. M. Siegel, J. Opt. Soc. Am. 38, 582 (1948).
    [Crossref]
  4. L. Harris and J. K. Beasley, J. Opt. Soc. Am. 42, 134 (1952).
    [Crossref]
  5. L. Harris, J. Opt. Soc. Am. 51, 80 (1961).
    [Crossref]
  6. A. Gouffé, Rev. Optique 24, 1 (1945).
  7. J. C. DeVos, Physica 20, 669 (1954); this paper contains an extensive bibliography.
    [Crossref]

1961 (1)

1954 (1)

J. C. DeVos, Physica 20, 669 (1954); this paper contains an extensive bibliography.
[Crossref]

1952 (1)

1948 (1)

1945 (1)

A. Gouffé, Rev. Optique 24, 1 (1945).

Beasley, J. K.

Chasmar, R. P.

See R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Clarendon Press, Oxford, England, 1957), pp. 89–91.

DeVos, J. C.

J. C. DeVos, Physica 20, 669 (1954); this paper contains an extensive bibliography.
[Crossref]

Gouffé, A.

A. Gouffé, Rev. Optique 24, 1 (1945).

Harris, L.

Jones, F. E.

See R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Clarendon Press, Oxford, England, 1957), pp. 89–91.

McGinnies, R. T.

Siegel, B. M.

Smith, R. A.

See R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Clarendon Press, Oxford, England, 1957), pp. 89–91.

Stierwalt, D. L.

D. L. Stierwalt, “Infrared Spectral Emissivity of Optical Materials,” NOLC Rept. 537, U. S. Naval Ordnance Laboratory, Corona, California, January1961.

J. Opt. Soc. Am. (3)

Physica (1)

J. C. DeVos, Physica 20, 669 (1954); this paper contains an extensive bibliography.
[Crossref]

Rev. Optique (1)

A. Gouffé, Rev. Optique 24, 1 (1945).

Other (2)

See R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-Red Radiation (Clarendon Press, Oxford, England, 1957), pp. 89–91.

D. L. Stierwalt, “Infrared Spectral Emissivity of Optical Materials,” NOLC Rept. 537, U. S. Naval Ordnance Laboratory, Corona, California, January1961.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Receiver assembly of the black detector. The length of the 15° conical receiver is 7.6 mm and the diameter at the base is 2 mm.

Fig. 2
Fig. 2

Schematic drawings showing geometrical relationships between an incoming ray and the dimensions of the cone: (a) as ray travels toward apex; (b) as reflected from truncated end of cone.

Fig. 3
Fig. 3

The calculated spectral emissivity of the conical cavity, assuming the internal surface to be either a perfect specular reflector or a perfect diffusing reflector.

Fig. 4
Fig. 4

Spectral emissivity and normal reflectance of the graphite blackening material.

Fig. 5
Fig. 5

Spectral emissivity of the black detector when the specular and diffuse reflectance of the blackening material is taken into account.

Fig. 6
Fig. 6

Arrangement of the optical components used in the spectral-response measurements.

Fig. 7
Fig. 7

Relative spectral response of three thermocouples.

Tables (1)

Tables Icon

Table I Number of reflections as a function of incoming angles.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

θ n = ϕ + ( 2 n 1 ) θ ,
l = p + i = 0 n X i , X n = 2 [ ( L p ) j = 0 n 1 X j ] tan θ / [ tan θ + tan ( ϕ + 2 n θ ) ] ,
X 0 = ( L p ) tan θ / ( tan ϕ + tan θ ) ,
ζ = ( L l ) + i = 1 k Z i , Z n = 2 [ ( L l ) + j = 1 k 1 Z j ] tan θ / tan [ α ( 2 k 1 ) θ ] tan θ ,
Z 1 = 2 ( L l ) tan θ / [ ( tan α θ ) tan θ ] ,
Z 0 = 2 ( L l ) tan θ / [ tan ( α + θ ) tan θ ] .
l = B C [ tan ( β + θ ) tan θ ] / [ tan ( β + θ ) tan θ ] .
R d = 1 ( R s + ) .