Abstract

We have made a precise comparison of the wavelength passed by a Hg198 Zeeman filter with that of the 2537-Å absorption line of an atomic beam. This was done by passing the light from the filter through the atomic beam and then comparing the amplitudes of the two peaks in the resulting reversed lines. A calibration was obtained by measuring the ratio of peak amplitudes with the beam tilted at various angles to the optic axis so as to introduce known Doppler shifts. The wavelengths of the Zeeman filter and atomic beam are shown to be equal to about one part in 109.

© 1963 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. G. Kessler, R. L. Barger, and W. G. Schweitzer, “Mercury Atomic Beams for Metrology,” Symposium No. 11 Interferometry (Her Majesty’s Stationery Office, London, 1960), p. 67.
  2. K. G. Kessler and W. G. Schweitzer, J. Opt. Soc. Am. 49, 199 (1959).
    [Crossref]
  3. K. G. Kessler and W. G. Schweitzer (to be published).
  4. W. G. Schweitzer, J. Opt. Soc. Am. 53, 1250 (1963).
    [Crossref]
  5. W. G. Fastie (private communication).
  6. W. G. Schweitzer, Ph.D. thesis, University of Maryland, 1962 (unpublished).
  7. The oxide-coated cathodes were given to us by B. T. Barnes of the General Electric Company, Lamp Division.
  8. The idea of using 1000 cps instead of 60 cps was suggested, for this reason, by Baird and Smith in their studies of krypton lamps. Refer to K. M. Baird and D. S. Smith, J. Opt. Soc. Am. 52, 510 (1962).
    [Crossref]
  9. The probability associated with this value of Students’ t is approximately 0.25 which is not near the probability values usually associated with statistical significance, 0.01 or 0.05.
  10. C. Goodman, Rev. Sci. Instr. 9, 233 (1938).
    [Crossref]

1963 (1)

1962 (1)

The idea of using 1000 cps instead of 60 cps was suggested, for this reason, by Baird and Smith in their studies of krypton lamps. Refer to K. M. Baird and D. S. Smith, J. Opt. Soc. Am. 52, 510 (1962).
[Crossref]

1959 (1)

1938 (1)

C. Goodman, Rev. Sci. Instr. 9, 233 (1938).
[Crossref]

Baird, K. M.

The idea of using 1000 cps instead of 60 cps was suggested, for this reason, by Baird and Smith in their studies of krypton lamps. Refer to K. M. Baird and D. S. Smith, J. Opt. Soc. Am. 52, 510 (1962).
[Crossref]

Barger, R. L.

K. G. Kessler, R. L. Barger, and W. G. Schweitzer, “Mercury Atomic Beams for Metrology,” Symposium No. 11 Interferometry (Her Majesty’s Stationery Office, London, 1960), p. 67.

Fastie, W. G.

W. G. Fastie (private communication).

Goodman, C.

C. Goodman, Rev. Sci. Instr. 9, 233 (1938).
[Crossref]

Kessler, K. G.

K. G. Kessler and W. G. Schweitzer, J. Opt. Soc. Am. 49, 199 (1959).
[Crossref]

K. G. Kessler, R. L. Barger, and W. G. Schweitzer, “Mercury Atomic Beams for Metrology,” Symposium No. 11 Interferometry (Her Majesty’s Stationery Office, London, 1960), p. 67.

K. G. Kessler and W. G. Schweitzer (to be published).

Schweitzer, W. G.

W. G. Schweitzer, J. Opt. Soc. Am. 53, 1250 (1963).
[Crossref]

K. G. Kessler and W. G. Schweitzer, J. Opt. Soc. Am. 49, 199 (1959).
[Crossref]

K. G. Kessler and W. G. Schweitzer (to be published).

W. G. Schweitzer, Ph.D. thesis, University of Maryland, 1962 (unpublished).

K. G. Kessler, R. L. Barger, and W. G. Schweitzer, “Mercury Atomic Beams for Metrology,” Symposium No. 11 Interferometry (Her Majesty’s Stationery Office, London, 1960), p. 67.

Smith, D. S.

The idea of using 1000 cps instead of 60 cps was suggested, for this reason, by Baird and Smith in their studies of krypton lamps. Refer to K. M. Baird and D. S. Smith, J. Opt. Soc. Am. 52, 510 (1962).
[Crossref]

J. Opt. Soc. Am. (3)

W. G. Schweitzer, J. Opt. Soc. Am. 53, 1250 (1963).
[Crossref]

K. G. Kessler and W. G. Schweitzer, J. Opt. Soc. Am. 49, 199 (1959).
[Crossref]

The idea of using 1000 cps instead of 60 cps was suggested, for this reason, by Baird and Smith in their studies of krypton lamps. Refer to K. M. Baird and D. S. Smith, J. Opt. Soc. Am. 52, 510 (1962).
[Crossref]

Rev. Sci. Instr. (1)

C. Goodman, Rev. Sci. Instr. 9, 233 (1938).
[Crossref]

Other (6)

K. G. Kessler, R. L. Barger, and W. G. Schweitzer, “Mercury Atomic Beams for Metrology,” Symposium No. 11 Interferometry (Her Majesty’s Stationery Office, London, 1960), p. 67.

The probability associated with this value of Students’ t is approximately 0.25 which is not near the probability values usually associated with statistical significance, 0.01 or 0.05.

K. G. Kessler and W. G. Schweitzer (to be published).

W. G. Fastie (private communication).

W. G. Schweitzer, Ph.D. thesis, University of Maryland, 1962 (unpublished).

The oxide-coated cathodes were given to us by B. T. Barnes of the General Electric Company, Lamp Division.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optical arrangement.

Fig. 2
Fig. 2

Optical arrangement for calibration.

Fig. 3
Fig. 3

Atomic-beam chamber.

Fig. 4
Fig. 4

Hot-cathode lamp.

Fig. 5
Fig. 5

Fringes recorded at various angular settings of the atomic beam in the single-pass experiment. Doppler shifts shown in parts per 109.

Fig. 6
Fig. 6

Graph of single-pass results.

Fig. 7
Fig. 7

Absorptance at 198 component due to a small background of the nearby 201b component.

Tables (1)

Tables Icon

Table I Measurements of the ratio R in the double-pass experiment.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

Δ ν / ν = ( v / c ) sin θ ,
θ ( c / v ) ( Δ ν / ν ) = 1.5 × 10 6 × 10 - 8 = 0.015 rad .
slope = ( 1 - R ) / shift ,
shift = ( 1 - R ) / slope .
shift = ( 0.005 ± 0.006 ) / ( 0.019 ± 0.0012 ) .
std . dev . of shift = shift × [ var R ( 1 - R ) 2 + var ( slope ) ( slope ) 2 ] 1 2 = 0.27 × [ ( 0.006 ) 2 ( 0.005 ) 2 + ( 0.0012 ) 2 ( 0.019 ) 2 ] 1 2 = 0.27 × 6 5 = 0.324.
shift = ( 0.27 ± 1.0 ) 10 - 9 .
Δ ν / ν = ( v / c ) sin θ ,
Δ ν / ν = ( v / c ) sin θ sin φ ,
R = T 1 / T 2 = exp [ - α 0 N x ( e - ω 1 2 - e - ω 2 2 ) ] .
ω 1 2 ( ν 1 - ν 0 ) 2 / Δ ν D ( ln 2 ) 1 2 .
R e - α 0 N x / 4 .
α 0 N x = 0.02.
N 3 × 10 10 atoms / cm 3 ,
N 1.7 × 10 9 .