Abstract

A rhodamine B quantum counter and a thermopile were used to calibrate a grating monochromator and photomultiplier for the measurement of corrected emission spectra from 240 to 600 mμ. The calibration was checked over a limited wavelength range with a standard tungsten lamp. Fluorescence spectra determined with the instrument agree well with previously reported spectra.

© 1962 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. (a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).
  2. R. L. Christiansen and I. Ames, J. Opt. Soc. Am. 51, 224 (1961).
    [Crossref]
  3. E. J. Bowen, Proc. Roy. Soc. (London) A154, 349 (1936).
  4. Manufactured by The American Instrument Company, Silver Spring, Maryland.
  5. Calibrated standard type U90, kindly supplied by the Photometry and Colorimetry section of the National Bureau of Standards, Washington 25, D. C.
  6. The Eppley Laboratory Inc., Newport, R. I.
  7. W. T. Anderson and L. F. Bird, Phys. Rev. 32, 293 (1928).
    [Crossref]
  8. G. R. Harrison and P. A. Leighton, Phys. Rev. 38, 899 (1931).
    [Crossref]
  9. G. Fuchsloser and G. Glaser, Z. Physik 138, 363 (1954).
    [Crossref]
  10. W. H. Melhuish, New Zealand J. Sci. Tech. 37.2B, 142 (1955).
  11. G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1958).
    [Crossref]

1961 (1)

1959 (1)

(a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).

1958 (1)

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1958).
[Crossref]

1955 (1)

W. H. Melhuish, New Zealand J. Sci. Tech. 37.2B, 142 (1955).

1954 (1)

G. Fuchsloser and G. Glaser, Z. Physik 138, 363 (1954).
[Crossref]

1936 (1)

E. J. Bowen, Proc. Roy. Soc. (London) A154, 349 (1936).

1931 (1)

G. R. Harrison and P. A. Leighton, Phys. Rev. 38, 899 (1931).
[Crossref]

1928 (1)

W. T. Anderson and L. F. Bird, Phys. Rev. 32, 293 (1928).
[Crossref]

Ames, I.

Anderson, W. T.

W. T. Anderson and L. F. Bird, Phys. Rev. 32, 293 (1928).
[Crossref]

Bird, L. F.

W. T. Anderson and L. F. Bird, Phys. Rev. 32, 293 (1928).
[Crossref]

Bowen, E. J.

E. J. Bowen, Proc. Roy. Soc. (London) A154, 349 (1936).

Christiansen, R. L.

Fuchsloser, G.

G. Fuchsloser and G. Glaser, Z. Physik 138, 363 (1954).
[Crossref]

Glaser, G.

G. Fuchsloser and G. Glaser, Z. Physik 138, 363 (1954).
[Crossref]

Harrison, G. R.

G. R. Harrison and P. A. Leighton, Phys. Rev. 38, 899 (1931).
[Crossref]

Leighton, P. A.

G. R. Harrison and P. A. Leighton, Phys. Rev. 38, 899 (1931).
[Crossref]

Lippert, E.

(a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).

Melhuish, W. H.

W. H. Melhuish, New Zealand J. Sci. Tech. 37.2B, 142 (1955).

Nagle, W.

(a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).

Seibold-Blankenstein, I.

(a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).

Staiger, U.

(a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).

Teale, F. W. J.

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1958).
[Crossref]

Weber, G.

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1958).
[Crossref]

J. Opt. Soc. Am. (1)

New Zealand J. Sci. Tech. (1)

W. H. Melhuish, New Zealand J. Sci. Tech. 37.2B, 142 (1955).

Phys. Rev. (2)

W. T. Anderson and L. F. Bird, Phys. Rev. 32, 293 (1928).
[Crossref]

G. R. Harrison and P. A. Leighton, Phys. Rev. 38, 899 (1931).
[Crossref]

Proc. Roy. Soc. (London) (1)

E. J. Bowen, Proc. Roy. Soc. (London) A154, 349 (1936).

Trans. Faraday Soc. (1)

G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 (1958).
[Crossref]

Z. Anal. Chem. (1)

(a)E. Lippert, W. Nagle, I. Seibold-Blankenstein, and U. Staiger, Z. Anal. Chem. 170, 1 (1959); (b)G. Kortüm and W. Hess, Z. phys. Chem. (N.F.) 19, 142 (1959); (c)W. H. Melhuish, J. Phys. Chem. 64, 762 (1960); (d)C. A. Parker and W. T. Rees, Analyst 85, 587 (1960).

Z. Physik (1)

G. Fuchsloser and G. Glaser, Z. Physik 138, 363 (1954).
[Crossref]

Other (3)

Manufactured by The American Instrument Company, Silver Spring, Maryland.

Calibrated standard type U90, kindly supplied by the Photometry and Colorimetry section of the National Bureau of Standards, Washington 25, D. C.

The Eppley Laboratory Inc., Newport, R. I.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Front surface attachment.

Fig. 2
Fig. 2

Spectral distribution of light from xenon lamp.

Fig. 3
Fig. 3

The calibration factor S(μ−1).

Fig. 4
Fig. 4

Fluorescence spectra of quinine bisulfate (2×10−6 M in 1N H2SO4) and anthracene (5×10−6 M in ethanol).

Fig. 5
Fig. 5

Comparison of the thermopile and the rhodamine B quantum counter as radiation detectors.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S ( λ ) = Q ( λ ) M ( λ ) / R ( λ ) B ( λ ) W ( λ ) ,
S ( μ - 1 ) = [ Q ( λ ) M ( λ ) / R ( λ ) W ( λ ) ] ( λ / λ 0 ) 2 ,
S ( μ - 1 ) = [ E ( λ ) / I ( λ ) ] ( λ / λ 0 ) 3 ,