Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. E. Williams, Proc. Opt. Conv. 2, 987 (1926).
  2. W. E. Williams, Applications of Interferometry (Methuen and Company, Ltd., London, 1950), p. 28.

1926 (1)

W. E. Williams, Proc. Opt. Conv. 2, 987 (1926).

Williams, W. E.

W. E. Williams, Proc. Opt. Conv. 2, 987 (1926).

W. E. Williams, Applications of Interferometry (Methuen and Company, Ltd., London, 1950), p. 28.

Proc. Opt. Conv. (1)

W. E. Williams, Proc. Opt. Conv. 2, 987 (1926).

Other (1)

W. E. Williams, Applications of Interferometry (Methuen and Company, Ltd., London, 1950), p. 28.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Transmission-reflection echelon.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

μ t ( 1 + cos θ ) - μ s sin θ ,
n λ = μ t + t ( μ 2 - sin 2 θ ) 1 2 - s sin θ .
n = t d μ d λ + t [ μ ( d μ / d λ ) - sin θ cos θ ( d θ / d λ ) ] ( μ 2 - sin 2 θ ) 1 2 - s cos θ d θ d λ .
d θ d λ = - n - t { 1 + [ μ / ( μ 2 - sin 2 θ ) 1 2 ] } ( d μ / d λ ) t sin θ cos θ / ( μ 2 - sin 2 θ ) 1 2 + s cos θ .
d θ = λ Aperture = λ N { [ t sin θ cos θ / ( μ 2 - sin 2 θ ) 1 2 ] + s cos θ } ,
λ d λ = - N { n - t [ 1 + μ ( μ 2 - sin 2 θ ) 1 2 ] d μ d λ } .
λ / d λ = - 2 N t / λ [ μ - λ ( d μ / d λ ) ] - N ( 2 μ t / λ ) .
A = exp [ - 1 2 k t ( 1 + sec θ ) ] ,
δ = ( 2 π / λ ) [ μ t + t ( μ 2 - sin 2 θ ) 1 2 - s sin θ ] .
y 1 = R A ϕ sin ω t y 2 = R A 2 ϕ sin ( ω t - δ ) y N = R A N ϕ sin { ω t - ( N - 1 ) δ } ,
Y = y 1 + y 2 + + y N = R A [ ( 1 - A N ) 2 + 4 A N sin 2 ( N δ / 2 ) ( 1 - A ) 2 + 4 A sin 2 ( δ / 2 ) ] 1 2 ϕ sin ( ω t - ) .
I = ϕ 2 [ R 2 A 2 ( 1 - A N ) 2 + 4 A N sin 2 ( N δ / 2 ) ( 1 - A ) 2 + 4 A sin 2 ( δ / 2 ) ] .
I min / I max = 8 / π 2
Δ δ / 2 = π / N e
λ / d λ = - N e ( 2 t / λ ) [ μ - λ ( d μ / d λ ) ] .
N e > N / μ .