Abstract

The continuous absorption coefficients for the bound-free and free-free transitions of H and H as well as the total absorption coefficients are given for hydrogen plasmas of 1, 10, 30, 100, and 300 atmos pressure and temperatures of 10 080, 12 600, and 16 800°K in the wavelength range from 2000 to 40 000 A. In order to calculate the free-free transitions of H the tables of Chandrasekhar and Breen have been extended to include θ=0.4 and θ=0.3. The results of these calculations, namely the free-free absorption coefficients for H per neutral hydrogen atom in the ground state and unit electron pressure, are given for θ=0.4 and θ=0.3. Finally, from the total absorption coefficients, the continuous emission from a 1-cm thick layer of the hydrogen plasmas under consideration has been derived. It is shown that for certain temperatures and pressures the continuous emission becomes so strong that the blackbody intensity of the corresponding temperature is reached for all wavelengths under consideration. This makes the plasma, in particular, useful for photolysis work and absorption spectroscopy.

© 1960 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Gehlhoff, Lehrbuch der technischen Physik (Leipzig, 1929), Bd. III.
  2. J. Euler, Ann. Phys. 11, 203 (1953).
    [Crossref]
  3. K. Lorche, Lichttechnik 7,(1955).
  4. S. Chandrasekhar, Astrophys. J. 102, 223, 395 (1945), I and II; S. Chandrasekhar and F. H. Breen, Astrophys. J. 104, 430 (1946).
    [Crossref]
  5. E. Vitense, Z. Astrophys. 28, 81 (1951).
  6. T. Peters, Z. Physik 135, 573 (1953).
    [Crossref]
  7. H. A. Kramers, Phil. Mag. 46, 836 (1923).
  8. J. A. Gaunt, Proc. Roy. Soc. (London) A126, 654 (1930).
  9. Y. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 11, 1 (1929).
  10. A. W. Maue, Ann. Physik 13, 161 (1932).
    [Crossref]
  11. D. H. Menzel and C. H. Pekeris, Monthly Notices Roy. Astron. Soc. 96, 77 (1935).
  12. A. Unsold, Physik der Sternatmosphaeren (Springer-Verlag, Berlin, 1955).
    [Crossref]
  13. A. Unsöld, Z. Astrophys. 24, 355 (1948).

1955 (1)

K. Lorche, Lichttechnik 7,(1955).

1953 (2)

J. Euler, Ann. Phys. 11, 203 (1953).
[Crossref]

T. Peters, Z. Physik 135, 573 (1953).
[Crossref]

1951 (1)

E. Vitense, Z. Astrophys. 28, 81 (1951).

1948 (1)

A. Unsöld, Z. Astrophys. 24, 355 (1948).

1945 (1)

S. Chandrasekhar, Astrophys. J. 102, 223, 395 (1945), I and II; S. Chandrasekhar and F. H. Breen, Astrophys. J. 104, 430 (1946).
[Crossref]

1935 (1)

D. H. Menzel and C. H. Pekeris, Monthly Notices Roy. Astron. Soc. 96, 77 (1935).

1932 (1)

A. W. Maue, Ann. Physik 13, 161 (1932).
[Crossref]

1930 (1)

J. A. Gaunt, Proc. Roy. Soc. (London) A126, 654 (1930).

1929 (1)

Y. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 11, 1 (1929).

1923 (1)

H. A. Kramers, Phil. Mag. 46, 836 (1923).

Chandrasekhar, S.

S. Chandrasekhar, Astrophys. J. 102, 223, 395 (1945), I and II; S. Chandrasekhar and F. H. Breen, Astrophys. J. 104, 430 (1946).
[Crossref]

Euler, J.

J. Euler, Ann. Phys. 11, 203 (1953).
[Crossref]

Gaunt, J. A.

J. A. Gaunt, Proc. Roy. Soc. (London) A126, 654 (1930).

Gehlhoff, G.

G. Gehlhoff, Lehrbuch der technischen Physik (Leipzig, 1929), Bd. III.

Kramers, H. A.

H. A. Kramers, Phil. Mag. 46, 836 (1923).

Lorche, K.

K. Lorche, Lichttechnik 7,(1955).

Maue, A. W.

A. W. Maue, Ann. Physik 13, 161 (1932).
[Crossref]

Menzel, D. H.

D. H. Menzel and C. H. Pekeris, Monthly Notices Roy. Astron. Soc. 96, 77 (1935).

Pekeris, C. H.

D. H. Menzel and C. H. Pekeris, Monthly Notices Roy. Astron. Soc. 96, 77 (1935).

Peters, T.

T. Peters, Z. Physik 135, 573 (1953).
[Crossref]

Sugiura, Y.

Y. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 11, 1 (1929).

Unsold, A.

A. Unsold, Physik der Sternatmosphaeren (Springer-Verlag, Berlin, 1955).
[Crossref]

Unsöld, A.

A. Unsöld, Z. Astrophys. 24, 355 (1948).

Vitense, E.

E. Vitense, Z. Astrophys. 28, 81 (1951).

Ann. Phys. (1)

J. Euler, Ann. Phys. 11, 203 (1953).
[Crossref]

Ann. Physik (1)

A. W. Maue, Ann. Physik 13, 161 (1932).
[Crossref]

Astrophys. J. (1)

S. Chandrasekhar, Astrophys. J. 102, 223, 395 (1945), I and II; S. Chandrasekhar and F. H. Breen, Astrophys. J. 104, 430 (1946).
[Crossref]

Lichttechnik (1)

K. Lorche, Lichttechnik 7,(1955).

Monthly Notices Roy. Astron. Soc. (1)

D. H. Menzel and C. H. Pekeris, Monthly Notices Roy. Astron. Soc. 96, 77 (1935).

Phil. Mag. (1)

H. A. Kramers, Phil. Mag. 46, 836 (1923).

Proc. Roy. Soc. (London) (1)

J. A. Gaunt, Proc. Roy. Soc. (London) A126, 654 (1930).

Sci. Papers Inst. Phys. Chem. Research (Tokyo) (1)

Y. Sugiura, Sci. Papers Inst. Phys. Chem. Research (Tokyo) 11, 1 (1929).

Z. Astrophys. (2)

E. Vitense, Z. Astrophys. 28, 81 (1951).

A. Unsöld, Z. Astrophys. 24, 355 (1948).

Z. Physik (1)

T. Peters, Z. Physik 135, 573 (1953).
[Crossref]

Other (2)

A. Unsold, Physik der Sternatmosphaeren (Springer-Verlag, Berlin, 1955).
[Crossref]

G. Gehlhoff, Lehrbuch der technischen Physik (Leipzig, 1929), Bd. III.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Tables (1)

Tables Icon

Table I a The free-free absorption coefficients of H per neutral hydrogen atom and unit electron pressure.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

κ ν = 64 π 4 3 3 m e e 10 c h 3 k 3 e - u 1 T 3 1 u 3 { u n < u u 4 g n e u n n 3 + e u 5 2 u 1 } · n H , u n = R h c n 2 k T ;             u = h ν k T ,
κ ( Δ k 2 ) = 7.251 · 10 - 29 · θ 5 2 ( Δ k 2 ) 3 · 0 d ( k 0 2 ) f ( k 0 2 ) k 0 2 k 1 × l = 1 l { l , k 0 2 r ¨ l - 1 , k 1 2 ) 2 + ( l - 1 , k 0 2 r ¨ l 1 k 1 2 ) 2 }
f ( k 0 2 ) = 100 k 0 exp ( - 31.32 θ k 0 2 ) ;             Δ k 2 = k 1 2 - k 0 2 .
n H + n e n H = ( 2 π m e k T ) 3 2 h 3 · e - ( x H - Δ x ) / k T
n H n e n H - = 4 ( 2 π m k T ) 3 2 h 3 · e - x H - / k T
n H + = n e + n H - ;             Δ x = 7.10 - 7 ( n e ) 1 2 [ ev ]
P 0 / k T = n e + n H - + n H + n H + ,
x H = 13.60 [ ev ] ;             x H - = 0.7496 [ ev ] ,
I ( λ ) = 0 l κ ( λ ) · B ( λ , T ) · e - κ · x d x = B ( λ , T ) · ( 1 - e - κ · l )
I ( λ ) = κ ( λ ) · B ( λ , T ) · l