Abstract

Theoretical aspects, production methods, testing, and application of high-order interference filters are described which employ a thin sheet of mica in place of the usual evaporated dielectric spacer layer. Such filters have been made with half-widths less than 1 A and transmissions of up to 70%. In particular, details are given of the cleaving process, the double refraction and the absorption of mica. A filter mount is described which makes it possible to construct filters of practical size. Measurements are reported on the uniformity of transmission peaks over the 4 cm diameter area of the filters. Theoretical and experimental values are given for the angular field. Other properties discussed are the effect of the filters on resolving power, the background, the spectral region for which they can be constructed and the stability of mica filters with time and with temperature changes. A narrow band filter is described. Another filter described was designed to transmit the 5896 A and reject the 5890 A line of sodium. A third filter rejects all the lines of the krypton spectrum except the 6056 A line which was recommended as the primary standard of length.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Quarterly Progress Report, Division of Applied Physics, March31, 1957, National Research Council, Canada.
  2. Ring, Beer, and Hewison, “Les progres recents en spectroscopic interferentielle-Bellevue, 9–13 Septembre 1957,” Editions Du Centre National De La Recherche Scientifique, Paris, 1958.
  3. R. R. McMath and J. W. Evans, The Sun, edited by G. P. Kuiper (University of Chicago Press, Chicago, 1953), pp. 620, 634.
  4. W. Geffcken, Kolloid-Z. 86, 55 (1939).
    [Crossref]
  5. J. W. Evans, J. Opt. Soc. Am. 48, 142 (1958).
    [Crossref]
  6. A. Dollfus, Rev. opt. 35, 539 (1956).
  7. A. F. Turner, “Les propriétés optiques des lames minces solides,” 140, Centre National de la Recherche Scientifique, Paris (1950).
  8. P. W. Baumeister and F. A. Jenkins, J. Opt. Soc. Am. 47, 57 (1957).
    [Crossref]
  9. W. Weinstein, Astronomical Optics (North-Holland Publishing Company, Amsterdam, 1956), p. 409.
  10. P. H. Lisberger and T. Ring, Optica Acta (Paris) 2, 42 (1955).
    [Crossref]
  11. S. Tolansky, Multiple-beam Interferometry (Clarendon Press, Oxford, 1948).
  12. J. Strong, Procedures in Experimental Physics (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1953).
  13. D. B. Judd, J. Research Natl. Bur. Standards 35, 245 (1945).
    [Crossref]
  14. J. A. Dobrowolski, “Optical aspherising by vacuum deposition,” Ph.D. thesis, University of London (September1955).
  15. T. B. Merrill, Materials & Methods 50, 80 (August, 1954).
  16. See reference 3, p. 631.

1958 (1)

1957 (1)

1956 (1)

A. Dollfus, Rev. opt. 35, 539 (1956).

1955 (1)

P. H. Lisberger and T. Ring, Optica Acta (Paris) 2, 42 (1955).
[Crossref]

1954 (1)

T. B. Merrill, Materials & Methods 50, 80 (August, 1954).

1945 (1)

D. B. Judd, J. Research Natl. Bur. Standards 35, 245 (1945).
[Crossref]

1939 (1)

W. Geffcken, Kolloid-Z. 86, 55 (1939).
[Crossref]

Baumeister, P. W.

Beer,

Ring, Beer, and Hewison, “Les progres recents en spectroscopic interferentielle-Bellevue, 9–13 Septembre 1957,” Editions Du Centre National De La Recherche Scientifique, Paris, 1958.

Dobrowolski, J. A.

J. A. Dobrowolski, “Optical aspherising by vacuum deposition,” Ph.D. thesis, University of London (September1955).

Dollfus, A.

A. Dollfus, Rev. opt. 35, 539 (1956).

Evans, J. W.

J. W. Evans, J. Opt. Soc. Am. 48, 142 (1958).
[Crossref]

R. R. McMath and J. W. Evans, The Sun, edited by G. P. Kuiper (University of Chicago Press, Chicago, 1953), pp. 620, 634.

Geffcken, W.

W. Geffcken, Kolloid-Z. 86, 55 (1939).
[Crossref]

Hewison,

Ring, Beer, and Hewison, “Les progres recents en spectroscopic interferentielle-Bellevue, 9–13 Septembre 1957,” Editions Du Centre National De La Recherche Scientifique, Paris, 1958.

Jenkins, F. A.

Judd, D. B.

D. B. Judd, J. Research Natl. Bur. Standards 35, 245 (1945).
[Crossref]

Lisberger, P. H.

P. H. Lisberger and T. Ring, Optica Acta (Paris) 2, 42 (1955).
[Crossref]

McMath, R. R.

R. R. McMath and J. W. Evans, The Sun, edited by G. P. Kuiper (University of Chicago Press, Chicago, 1953), pp. 620, 634.

Merrill, T. B.

T. B. Merrill, Materials & Methods 50, 80 (August, 1954).

Ring,

Ring, Beer, and Hewison, “Les progres recents en spectroscopic interferentielle-Bellevue, 9–13 Septembre 1957,” Editions Du Centre National De La Recherche Scientifique, Paris, 1958.

Ring, T.

P. H. Lisberger and T. Ring, Optica Acta (Paris) 2, 42 (1955).
[Crossref]

Strong, J.

J. Strong, Procedures in Experimental Physics (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1953).

Tolansky, S.

S. Tolansky, Multiple-beam Interferometry (Clarendon Press, Oxford, 1948).

Turner, A. F.

A. F. Turner, “Les propriétés optiques des lames minces solides,” 140, Centre National de la Recherche Scientifique, Paris (1950).

Weinstein, W.

W. Weinstein, Astronomical Optics (North-Holland Publishing Company, Amsterdam, 1956), p. 409.

J. Opt. Soc. Am. (2)

J. Research Natl. Bur. Standards (1)

D. B. Judd, J. Research Natl. Bur. Standards 35, 245 (1945).
[Crossref]

Kolloid-Z. (1)

W. Geffcken, Kolloid-Z. 86, 55 (1939).
[Crossref]

Materials & Methods (1)

T. B. Merrill, Materials & Methods 50, 80 (August, 1954).

Optica Acta (Paris) (1)

P. H. Lisberger and T. Ring, Optica Acta (Paris) 2, 42 (1955).
[Crossref]

Rev. opt. (1)

A. Dollfus, Rev. opt. 35, 539 (1956).

Other (9)

A. F. Turner, “Les propriétés optiques des lames minces solides,” 140, Centre National de la Recherche Scientifique, Paris (1950).

Quarterly Progress Report, Division of Applied Physics, March31, 1957, National Research Council, Canada.

Ring, Beer, and Hewison, “Les progres recents en spectroscopic interferentielle-Bellevue, 9–13 Septembre 1957,” Editions Du Centre National De La Recherche Scientifique, Paris, 1958.

R. R. McMath and J. W. Evans, The Sun, edited by G. P. Kuiper (University of Chicago Press, Chicago, 1953), pp. 620, 634.

S. Tolansky, Multiple-beam Interferometry (Clarendon Press, Oxford, 1948).

J. Strong, Procedures in Experimental Physics (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1953).

W. Weinstein, Astronomical Optics (North-Holland Publishing Company, Amsterdam, 1956), p. 409.

See reference 3, p. 631.

J. A. Dobrowolski, “Optical aspherising by vacuum deposition,” Ph.D. thesis, University of London (September1955).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

F. 1
F. 1

Calculated half-width ω0.5 of interference filters vs reflection coefficient. Indicated on the abscissa are the reflection coefficients obtainable with λ/4 layers of ZnS and MgF2 on mica.

F. 2
F. 2

Large cleaved piece of mica showing flatness and freedom from major cleavage steps.

F. 3
F. 3

Apparatus for measurements on mica spacers and completed filters.

F. 4
F. 4

Separation (in orders) of the two plane polarized transmission peak systems at λ = 5461 A in spacers of different interorder separations Δλ.

F. 5
F. 5

Cleavage steps on the surface of a mica filter whose transmission peak was constant over the filter area to within 0.3 A.

F. 6
F. 6

Exploded view of a filter mount. Mount for mica interference filters.

F. 7
F. 7

Photograph of a mounted filter, a mount, and box for storing spacers and finished filters.

F. 8
F. 8

Interferogram showing surface flatness of a mounted mica filter.

F. 9
F. 9

Absorption coefficient vs wavelength of four different samples of mica: 1, 2-Ontario muscovite, 3-Indian ruby, 4-Ontario ruby.

F. 10
F. 10

Theoretical transmission for plane polarized light for mica filters with different values of (αp/ω0.5).

F. 11
F. 11

Theoretical transmission of filters made from Indian ruby and experimental points from filters of different interorder separations vs halfwidths of transmission bands (in A).

F. 12
F. 12

Calculated angular fields (in degrees) and experimental points for filters of different half-widths (in A).

F. 13
F. 13

Transmission of a plate of Indian ruby mica vs wavelength (in microns).

F. 14
F. 14

Effect of temperature on location of transmission peaks.

F. 15
F. 15

Filter for the 5896 A line of sodium. Spectrometer scan of the two sodium lines normalized to peak intensity of 1 at λ = 5896 A: (a) without the filter, (b) with the filter.

F. 16
F. 16

Filter for the 6056 A line of krypton.

F. 17
F. 17

Chart for selecting the correct thickness of mica spacers. The interorder separation in angstrom units was calculated for the case when δν = 0 occurs at λ = 6056 A. See text for further explanation.

F. 18
F. 18

Mica interference filter with a 1-A wide transmission band. Transmission at peak is 25% of plane polarized light.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

I = T 2 ( 1 R ) 2 · 1 1 + F sin 2 ( φ + ψ ) ,
F = 4 R / ( 1 R ) 2
φ = ( 2 π n t cos i ) / λ .
( 2 n t cos i ) / λ + ψ / π = p ,
Δ λ = λ / p .
ω 0.5 = 2 / [ π ( F ) 1 2 ] .
W 0.5 = ω 0.5 Δ λ .
ω 0.85 = 0.4 ω 0.5
ω 0.1 = 3 ω 0.5 .
2 n 1 t = ( p + k + d p ) λ 2 n 2 t = p λ .
( n 1 n 2 ) / n 2 = ( k + d p ) / p
( d p + k ) · Δ λ = λ · ( n 1 n 2 ) / n 2 .
α = λ 4 π t log [ ( n + 1 ) 4 16 n 2 · τ ] .
T = 1 ( 1 + X ) 2 , where X = 2 p n ω 0.5 ,
2 n t cos i / λ = p ψ / π .
2 n t cos r / ( λ ± 0.2 W 0.5 ) = p ψ / π .
r 2 = i 2 ± ( 0.4 W 0.5 ) / λ .
0 i i c , Δ i = 2 r + i c i , Δ i = r + r .