Abstract

A critical angle method is described for determining refractive indexes of moderately absorbing liquids (k < 0.03). It is pointed out that when the sample is absorbing the value of the critical angle depends upon the extinction coefficient as well as the refractive index. Dispersion data are given for weak infrared bands of CHCl3 and CS2.

© 1959 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Jaffe and U. Oppenheim, J. Opt. Soc. Am. 47, 782 (1957); referred to as I throughout.
    [Crossref] [PubMed]
  2. L. N. Hadley and D. M. Dennison, J. Opt. Soc. Am. 37, 451 (1947).
    [Crossref]
  3. A. Walsh, J. Opt. Soc. Am. 42, 94 (1952).
    [Crossref]
  4. A. H. Pfund, J. Opt. Soc. Am. 25, 351 (1935).
    [Crossref]
  5. M. A. Pittman, J. Opt. Soc. Am. 29, 358 (1939).
    [Crossref]

1957 (1)

1952 (1)

1947 (1)

1939 (1)

1935 (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

F. 1
F. 1

Path of a ray through the refractometer block.

F. 2
F. 2

Transmitted intensity T through the refractometer block as a function of θ3, for a series of values of k (s/λ = 3, n0 = 2.4160, n = 1.4345).

F. 3
F. 3

Difference Δθ between the pseudocritical angle θps and the critical angle θc versus k for a series of values of s/λ.

F. 4
F. 4

Dispersion in the 3.28 μ band of chloroform (24°C).

F. 5
F. 5

Dispersion in the 4.64 μ band of carbon disulfide (10°C).

Tables (2)

Tables Icon

Table I Indeterminacy Δθ3 in θ3 and indeterminacy Δn in n due to a 1% error in T for a series of values of k.

Tables Icon

Table II Extinction coefficients for the 4.64 μ band of carbon disulfide and the 3.28 μ band of chloroform.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 sin θ c
T = 8 q [ ( q + 1 ) 2 + 4 c 2 n 0 4 p 2 ] cosh 4 π b s λ + ( q + 1 ) 4 c n 0 2 p sinh 4 π b s λ [ ( q 1 ) 2 4 d 2 n 0 4 p 2 ] cos 4 π a s λ + ( q 1 ) 4 d n 0 4 p 2 sin 4 π a s λ , 2 a 2 = [ ( n 2 k 2 n 0 2 sin 2 θ 3 ) 2 + 4 n 2 k 2 ] 1 2 + n 2 k 2 n 0 2 sin 2 θ 3 , 2 b 2 = [ ( n 2 k 2 n 0 2 sin 2 θ 3 ) 2 + 4 n 2 k 2 ] 1 2 n 2 + k 2 + n 0 2 sin 2 θ 3 , c = a ( n 2 k 2 ) + 2 b n k ( n 2 + k 2 ) 2 , d = b ( n 2 k 2 ) 2 a n k ( n 2 + k 2 ) 2 , p = n 0 cos θ 3 , q = ( a 2 + b 2 ) n 0 4 p 2 ( n 2 + k 2 ) 2 .
k = 1 4 π t / λ ln ( I 0 / I ) ,
n = n 0 sin θ c .