Abstract

Threshold voltages of alternating currents passing through the head as determined with flickering phosphenes as an index were plotted as a function of frequencies, and 7 conspicuous minima were found in the curve. It was shown that these minima are the result of differential sensitivity of 7 types of receptor having their own time-constants. Based on the fact that the electrical sensitivity of the eye as measured by an ac of any optimal frequency is selectively enhanced on exposure of the retina to weak spectral lights of wavelengths of a certain limited range, a spectral response curve was determined for each kind of receptor. The response curves determined in this way had so sharp peaks well localized on definite parts of the spectrum that the optimal wavelength for each kind of receptor could be determined with sufficient accuracy. The optimal wavelengths and resonance frequencies of the receptors are as follows: red (650 mµ) 77 cycles per sec; orange (610 mµ) 62.5 cps; yellow (575 mµ) 52.5 cps; green (515 mµ) 42.5 cps; blue (465 mµ) 35 cps; violet (415 mµ) 28.5 cps; rod or scotopic receptor (507 mµ) 20 cps.

© 1953 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).
    [Crossref]
  2. R. Granit, Acta Physiol. Scand. 3, 137 (1941).
    [Crossref]
  3. R. Granit, Ergeb. Physiol. 46, 31 (1950).
    [Crossref]
  4. R. Granit, J. Neurophysiol. 8, 195 (1945).
  5. K. Motokawa, J. Neurophysiol. 12, 291 (1949).
    [PubMed]
  6. K. Motokawa, J. Neurophysiol. 12, 465 (1949).
    [PubMed]
  7. L. J. Pollock and L. L. Mayer, Am. J. Physiol. 122, 57 (1938).
  8. F. Schwarz, Z. Sinnesphysiol. 69, 1 (1940).
  9. K. Motokawa and K. Iwama, Tohoku J. Exp. Med. 53, 201 (1950).
    [Crossref] [PubMed]
  10. A. Barnett, Am. J. Physiol. 133, P 205 (1941).
  11. Z. Abe, Tohoku J. Exp. Med. 54, 37 (1951).
    [Crossref] [PubMed]
  12. M. A. Bouman, J. Ten Doesschate, and H. H. v. D. Velden, Docum. Ophthalmol. 5, 151 (1951).
    [Crossref]
  13. G. Meyer-Schwickerath, Graefe’s Arch. Ophthalmol. 151, 693 (1951).
    [Crossref]
  14. Motokawa, Ebe, Arakawa, and Oikawa, J. Opt. Soc. Am. 41, 478 (1951).
    [Crossref] [PubMed]
  15. E. N. Willmer, Retinal Structure and Colour Vision (Cambridge University Press, Cambridge, 1946).
  16. S. A. Talbot, J. Opt. Soc. Am. 41, 895, 918 (1951).
    [Crossref] [PubMed]
  17. A. König and C. Dieterici, Z. Psychol. 4, 241 (1892).
  18. W. D. Wright, Researches on Normal and Defective Colour Vision (Henry Kimpton, London, 1946).
  19. L. C. Thomson, J. Physiol. 112, 114 (1951).
  20. G. Wald, Nature 140, 545 (1937).
    [Crossref]
  21. H. T. A. Dartnall, Nature 166, 207 (1950).
    [Crossref] [PubMed]
  22. H. Hartridge, Recent Advances in the Physiology of Vision (Churchill Press, London, 1950).
  23. H. Hartridge, Experientia 6, 1 (1950).
    [Crossref] [PubMed]

1951 (6)

Z. Abe, Tohoku J. Exp. Med. 54, 37 (1951).
[Crossref] [PubMed]

M. A. Bouman, J. Ten Doesschate, and H. H. v. D. Velden, Docum. Ophthalmol. 5, 151 (1951).
[Crossref]

G. Meyer-Schwickerath, Graefe’s Arch. Ophthalmol. 151, 693 (1951).
[Crossref]

Motokawa, Ebe, Arakawa, and Oikawa, J. Opt. Soc. Am. 41, 478 (1951).
[Crossref] [PubMed]

S. A. Talbot, J. Opt. Soc. Am. 41, 895, 918 (1951).
[Crossref] [PubMed]

L. C. Thomson, J. Physiol. 112, 114 (1951).

1950 (4)

H. T. A. Dartnall, Nature 166, 207 (1950).
[Crossref] [PubMed]

H. Hartridge, Experientia 6, 1 (1950).
[Crossref] [PubMed]

R. Granit, Ergeb. Physiol. 46, 31 (1950).
[Crossref]

K. Motokawa and K. Iwama, Tohoku J. Exp. Med. 53, 201 (1950).
[Crossref] [PubMed]

1949 (2)

K. Motokawa, J. Neurophysiol. 12, 291 (1949).
[PubMed]

K. Motokawa, J. Neurophysiol. 12, 465 (1949).
[PubMed]

1945 (1)

R. Granit, J. Neurophysiol. 8, 195 (1945).

1941 (2)

R. Granit, Acta Physiol. Scand. 3, 137 (1941).
[Crossref]

A. Barnett, Am. J. Physiol. 133, P 205 (1941).

1940 (1)

F. Schwarz, Z. Sinnesphysiol. 69, 1 (1940).

1939 (1)

W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).
[Crossref]

1938 (1)

L. J. Pollock and L. L. Mayer, Am. J. Physiol. 122, 57 (1938).

1937 (1)

G. Wald, Nature 140, 545 (1937).
[Crossref]

1892 (1)

A. König and C. Dieterici, Z. Psychol. 4, 241 (1892).

Abe, Z.

Z. Abe, Tohoku J. Exp. Med. 54, 37 (1951).
[Crossref] [PubMed]

Arakawa,

Barnett, A.

A. Barnett, Am. J. Physiol. 133, P 205 (1941).

Bouman, M. A.

M. A. Bouman, J. Ten Doesschate, and H. H. v. D. Velden, Docum. Ophthalmol. 5, 151 (1951).
[Crossref]

Dartnall, H. T. A.

H. T. A. Dartnall, Nature 166, 207 (1950).
[Crossref] [PubMed]

Dieterici, C.

A. König and C. Dieterici, Z. Psychol. 4, 241 (1892).

Ebe,

Granit, R.

R. Granit, Ergeb. Physiol. 46, 31 (1950).
[Crossref]

R. Granit, J. Neurophysiol. 8, 195 (1945).

R. Granit, Acta Physiol. Scand. 3, 137 (1941).
[Crossref]

Hartridge, H.

H. Hartridge, Experientia 6, 1 (1950).
[Crossref] [PubMed]

H. Hartridge, Recent Advances in the Physiology of Vision (Churchill Press, London, 1950).

Iwama, K.

K. Motokawa and K. Iwama, Tohoku J. Exp. Med. 53, 201 (1950).
[Crossref] [PubMed]

König, A.

A. König and C. Dieterici, Z. Psychol. 4, 241 (1892).

Mayer, L. L.

L. J. Pollock and L. L. Mayer, Am. J. Physiol. 122, 57 (1938).

Meyer-Schwickerath, G.

G. Meyer-Schwickerath, Graefe’s Arch. Ophthalmol. 151, 693 (1951).
[Crossref]

Motokawa,

Motokawa, K.

K. Motokawa and K. Iwama, Tohoku J. Exp. Med. 53, 201 (1950).
[Crossref] [PubMed]

K. Motokawa, J. Neurophysiol. 12, 291 (1949).
[PubMed]

K. Motokawa, J. Neurophysiol. 12, 465 (1949).
[PubMed]

Oikawa,

Pollock, L. J.

L. J. Pollock and L. L. Mayer, Am. J. Physiol. 122, 57 (1938).

Schwarz, F.

F. Schwarz, Z. Sinnesphysiol. 69, 1 (1940).

Stiles, W. S.

W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).
[Crossref]

Talbot, S. A.

Ten Doesschate, J.

M. A. Bouman, J. Ten Doesschate, and H. H. v. D. Velden, Docum. Ophthalmol. 5, 151 (1951).
[Crossref]

Thomson, L. C.

L. C. Thomson, J. Physiol. 112, 114 (1951).

v. D. Velden, H. H.

M. A. Bouman, J. Ten Doesschate, and H. H. v. D. Velden, Docum. Ophthalmol. 5, 151 (1951).
[Crossref]

Wald, G.

G. Wald, Nature 140, 545 (1937).
[Crossref]

Willmer, E. N.

E. N. Willmer, Retinal Structure and Colour Vision (Cambridge University Press, Cambridge, 1946).

Wright, W. D.

W. D. Wright, Researches on Normal and Defective Colour Vision (Henry Kimpton, London, 1946).

Acta Physiol. Scand. (1)

R. Granit, Acta Physiol. Scand. 3, 137 (1941).
[Crossref]

Am. J. Physiol. (2)

L. J. Pollock and L. L. Mayer, Am. J. Physiol. 122, 57 (1938).

A. Barnett, Am. J. Physiol. 133, P 205 (1941).

Docum. Ophthalmol. (1)

M. A. Bouman, J. Ten Doesschate, and H. H. v. D. Velden, Docum. Ophthalmol. 5, 151 (1951).
[Crossref]

Ergeb. Physiol. (1)

R. Granit, Ergeb. Physiol. 46, 31 (1950).
[Crossref]

Experientia (1)

H. Hartridge, Experientia 6, 1 (1950).
[Crossref] [PubMed]

Graefe’s Arch. Ophthalmol. (1)

G. Meyer-Schwickerath, Graefe’s Arch. Ophthalmol. 151, 693 (1951).
[Crossref]

J. Neurophysiol. (3)

R. Granit, J. Neurophysiol. 8, 195 (1945).

K. Motokawa, J. Neurophysiol. 12, 291 (1949).
[PubMed]

K. Motokawa, J. Neurophysiol. 12, 465 (1949).
[PubMed]

J. Opt. Soc. Am. (2)

J. Physiol. (1)

L. C. Thomson, J. Physiol. 112, 114 (1951).

Nature (2)

G. Wald, Nature 140, 545 (1937).
[Crossref]

H. T. A. Dartnall, Nature 166, 207 (1950).
[Crossref] [PubMed]

Proc. Roy. Soc. (London) (1)

W. S. Stiles, Proc. Roy. Soc. (London) B127, 64 (1939).
[Crossref]

Tohoku J. Exp. Med. (2)

K. Motokawa and K. Iwama, Tohoku J. Exp. Med. 53, 201 (1950).
[Crossref] [PubMed]

Z. Abe, Tohoku J. Exp. Med. 54, 37 (1951).
[Crossref] [PubMed]

Z. Psychol. (1)

A. König and C. Dieterici, Z. Psychol. 4, 241 (1892).

Z. Sinnesphysiol. (1)

F. Schwarz, Z. Sinnesphysiol. 69, 1 (1940).

Other (3)

W. D. Wright, Researches on Normal and Defective Colour Vision (Henry Kimpton, London, 1946).

E. N. Willmer, Retinal Structure and Colour Vision (Cambridge University Press, Cambridge, 1946).

H. Hartridge, Recent Advances in the Physiology of Vision (Churchill Press, London, 1950).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

F. 1
F. 1

Strength-frequency curve of human eye. Ordinates: threshold voltages in percentage of that at 20 cps. Abscissas: frequencies of stimulating ac. Points of different marks were obtained on different days from one and the same subject. The part of the curve enclosed by a broken rectangle is shown on a larger scale in the inset, in which 10 values of thresholds are given for each cycle to show degree of accuracy. The number of concentric circles indicates the number of coincidence.

F. 2
F. 2

Time course of electrical sensitivity of the eye on exposure of the fovea and its vicinity to weak spectral light. Ordinates: percentage increases in electrical sensitivity above resting level. Abscissas: time in seconds from onset of illumination. Re, Ye, Gr, Bl, and rod denote data obtained by using red, yellow, green, blue lights, and spectral light of 507 mµ for illumination, respectively. Figures in parentheses show frequencies of ac used for electrical stimulation.

F. 3
F. 3

Effects of the intensity of light upon increases in electrical sensitivity of the eye resulting from illumination. Intensity is expressed in multiples of threshold. Data marked by empty circles, triangles, dots, rectangles, and crosses were obtained, using red light in combination with ac of 73.5 cps, yellow light with ac of 53.5 cps, green light with ac of 42 cps, blue light with ac of 34 cps and light of 507 mµ with ac of 20 cps, respectively.

F. 4
F. 4

Resonance curves. Ordinates: percentage increases in electrical sensitivity resulting from illumination. Abscissas: frequencies of ac used for electrical stimulation. Each set of curves was obtained with light of a given wavelength and of intensity fixed at 2 times as high as threshold.

F. 5
F. 5

Spectral response curves. Each set of curves was obtained with ac of a given frequency and lights of varying wavelengths but of constant intensity in physiological unit (2 times as high as threshold).

F. 6
F. 6

Resonance curve (above) and spectral response curve (below) obtained from a retinal area 20° from foveal center.

Tables (2)

Tables Icon

Table I Accuracy in measurement of ζ-values for the peak of orange receptor.

Tables Icon

Table II Location of maximal retinal responses in the spectrum.