Abstract

An attempt is made to obtain the design of a photometer unit which may be used with an infrared spectrograph so that percent transmission or some related quantity may be recorded directly. Several basic methods of accomplishing this are evaluated. It is concluded that the following should characterize the design: the optical system should be symmetrical; there should be only one path through the spectrograph; only one detector and amplifier should be employed; and these should actuate, through an appropriate servomechanism, a device to maintain equality of intensity in the two radiation beams, so that a null system results. Several possible basic designs for some of the components of the photometer are discussed.

© 1951 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Wright and L. W. Herscher, J. Opt. Soc. Am. 37, 211 (1947).
    [Crossref] [PubMed]
  2. Baird, O’Bryan, Ogden, and Lee, J. Opt. Soc. Am. 37, 754 (1947).
    [Crossref] [PubMed]
  3. B. L. Crawford, Symposium on Molecular Structure and Spectroscopy, The Ohio State University, June, 1946.
  4. E. B. Baker and C. D. Robb, Rev. Sci. Instr. 14, 362 (1943).
    [Crossref]
  5. Standard Oil Development Corporation (private communication).
  6. G. B. B. M. Sutherland and H. W. Thompson, Trans. Faraday Soc. 41, 179 (1945).
  7. J. D. Hardy and A. I. Ryder, Phys. Rev. 55, 1112 (1939).
  8. J. U. White and M. D. Liston, J. Opt. Soc. Am. 40, 29 (1950).
    [Crossref]
  9. Abraham Savitsky and Ralph S. Halford, Rev. Sci. Instr. 21, 203 (1950).
    [Crossref]
  10. Rugg, Calvert, and Smith (to be published).
  11. Hornig, Hyde, and Adcock, J. Opt. Soc. Am. 40, 497 (1950).
    [Crossref]
  12. G. R. Harrison and E. P. Bentley, J. Opt. Soc. Am. 30, 290 (1940).
    [Crossref]
  13. J. L. Michaelson and H. A. Liebhafsky, Gen. Elec. Rev. 39, 445 (1936).
  14. L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
    [Crossref]
  15. C. H. Schlesman and F. G. Brockman, T. Opt. Soc. Am. 35, 755 (1945).
    [Crossref]
  16. J. A. Becker and H. R. Moore, J. Opt. Soc. Am. 36, 354 (1946).

1950 (3)

1947 (2)

1946 (1)

J. A. Becker and H. R. Moore, J. Opt. Soc. Am. 36, 354 (1946).

1945 (3)

L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
[Crossref]

C. H. Schlesman and F. G. Brockman, T. Opt. Soc. Am. 35, 755 (1945).
[Crossref]

G. B. B. M. Sutherland and H. W. Thompson, Trans. Faraday Soc. 41, 179 (1945).

1943 (1)

E. B. Baker and C. D. Robb, Rev. Sci. Instr. 14, 362 (1943).
[Crossref]

1940 (1)

1939 (1)

J. D. Hardy and A. I. Ryder, Phys. Rev. 55, 1112 (1939).

1936 (1)

J. L. Michaelson and H. A. Liebhafsky, Gen. Elec. Rev. 39, 445 (1936).

Adcock,

Baird,

Baker, E. B.

E. B. Baker and C. D. Robb, Rev. Sci. Instr. 14, 362 (1943).
[Crossref]

Becker, J. A.

J. A. Becker and H. R. Moore, J. Opt. Soc. Am. 36, 354 (1946).

Bentley, E. P.

Brockman, F. G.

C. H. Schlesman and F. G. Brockman, T. Opt. Soc. Am. 35, 755 (1945).
[Crossref]

Calvert,

Rugg, Calvert, and Smith (to be published).

Crawford, B. L.

B. L. Crawford, Symposium on Molecular Structure and Spectroscopy, The Ohio State University, June, 1946.

Halford, Ralph S.

Abraham Savitsky and Ralph S. Halford, Rev. Sci. Instr. 21, 203 (1950).
[Crossref]

Hardy, J. D.

J. D. Hardy and A. I. Ryder, Phys. Rev. 55, 1112 (1939).

Harrison, G. R.

Herscher, L. W.

Hornig,

Hyde,

Lee,

Liebhafsky, H. A.

J. L. Michaelson and H. A. Liebhafsky, Gen. Elec. Rev. 39, 445 (1936).

Liston, M. D.

Michaelson, J. L.

J. L. Michaelson and H. A. Liebhafsky, Gen. Elec. Rev. 39, 445 (1936).

Moore, H. R.

J. A. Becker and H. R. Moore, J. Opt. Soc. Am. 36, 354 (1946).

O’Bryan,

Ogden,

Robb, C. D.

E. B. Baker and C. D. Robb, Rev. Sci. Instr. 14, 362 (1943).
[Crossref]

Roess, L. C.

L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
[Crossref]

Rugg,

Rugg, Calvert, and Smith (to be published).

Ryder, A. I.

J. D. Hardy and A. I. Ryder, Phys. Rev. 55, 1112 (1939).

Savitsky, Abraham

Abraham Savitsky and Ralph S. Halford, Rev. Sci. Instr. 21, 203 (1950).
[Crossref]

Schlesman, C. H.

C. H. Schlesman and F. G. Brockman, T. Opt. Soc. Am. 35, 755 (1945).
[Crossref]

Smith,

Rugg, Calvert, and Smith (to be published).

Sutherland, G. B. B. M.

G. B. B. M. Sutherland and H. W. Thompson, Trans. Faraday Soc. 41, 179 (1945).

Thompson, H. W.

G. B. B. M. Sutherland and H. W. Thompson, Trans. Faraday Soc. 41, 179 (1945).

White, J. U.

Wright, N.

Gen. Elec. Rev. (1)

J. L. Michaelson and H. A. Liebhafsky, Gen. Elec. Rev. 39, 445 (1936).

J. Opt. Soc. Am. (6)

Phys. Rev. (1)

J. D. Hardy and A. I. Ryder, Phys. Rev. 55, 1112 (1939).

Rev. Sci. Instr. (3)

Abraham Savitsky and Ralph S. Halford, Rev. Sci. Instr. 21, 203 (1950).
[Crossref]

E. B. Baker and C. D. Robb, Rev. Sci. Instr. 14, 362 (1943).
[Crossref]

L. C. Roess, Rev. Sci. Instr. 16, 172 (1945).
[Crossref]

T. Opt. Soc. Am. (1)

C. H. Schlesman and F. G. Brockman, T. Opt. Soc. Am. 35, 755 (1945).
[Crossref]

Trans. Faraday Soc. (1)

G. B. B. M. Sutherland and H. W. Thompson, Trans. Faraday Soc. 41, 179 (1945).

Other (3)

Rugg, Calvert, and Smith (to be published).

Standard Oil Development Corporation (private communication).

B. L. Crawford, Symposium on Molecular Structure and Spectroscopy, The Ohio State University, June, 1946.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of “Type 1” photometer unit with spectrograph and associated apparatus.

Fig. 2
Fig. 2

Block diagram of “Type 2” photometer unit with spectrograph and associated apparatus.

Fig. 3
Fig. 3

Block diagram of “Type 3” photometer unit with spectrograph and associated apparatus.

Fig. 4
Fig. 4

Schematic diagram of a photometer unit embodying design features discussed under heading of “Type 3” photometers.

Fig. 5
Fig. 5

Design for a “Type 3” photometer unit. Radiation from source forms an image at either 1 or 1a, then at 2 or 2a, and finally at 3 which is at the entrance slit of a spectrograph. An intensity control at image 1 equalizes the amounts of monochromatic radiation at images 2 and 2a. A shutter with alternate reflecting and transparent segments causes radiation to go through either cell A or cell B.