Abstract

Previous designs of reflecting microscope objectives using spherical mirrors have approximated to a design derived from theory due to Schwarzschild, consisting of two concentric mirrors giving a central obstruction of the numerical aperture of 45 percent. Except for the designs of Matsukov, where the central obstruction takes even higher values, the numerical aperture has been limited to 0.5. Theory has been taken as indicating that there was little room for improvement without a high degree of asphericity in one of the mirrors. By an experimental approach, using a microscope interferometer, it is shown in the present work that the Schwarzschild conditions may be forgotten completely and very useful designs of objectives still produced for purposes where a large field area is not required. Such reflecting systems may be made little bigger than refracting objectives and have numerical aperture 0.60 and 35 percent central obstruction, and are free from spherical aberration. No refracting components or compensating lenses are employed. Mechanical parts for these objectives and a microscope stand are described.

© 1951 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Burch, Nature 152, 748 (1943); Proc. Phys. Soc. 59, 41 (1947).
    [Crossref]
  2. E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).
  3. A. Bouwers, Achievements in Optics (Elsevier Publishing Company, Inc., Amsterdam, 1946).
  4. D. S. Grey, J. Opt. Soc. Am. 39, 723 (1949).
    [Crossref] [PubMed]
  5. B. K. Johnson, J. Sci. Instr. 26, 128 (1949). Proc. Phys. Soc. 57, 1034 (1949).
    [Crossref]
  6. D. D. Maksutov, U.S.S.R. Pat. No. 40859 (1932).
  7. G. G. Wynne, private communication.
  8. R. Smith, Complete System of Optics (1738).
  9. T. Dunham, private communication, 1948.
  10. Rayleigh, Phil. Mag. 8, 261 (1879).
    [Crossref]
  11. W. E. Seeds and M. H. F. Wilkins, Nature 164, 228 (1949).
    [Crossref]
  12. H. E. Dall, J. Brit. Ast. Ass. 48, 163 (1938).
  13. H. Osterberger and J. E. Wilkins, J. Opt. Soc. Am. 39, 553 (1949).
    [Crossref]
  14. C. R. Burch, Proc. Phys. Soc. 55, 433 (1943).
    [Crossref]
  15. K. Schwarzschild, Theorie der Spiegeteleskop(1905).
  16. F. Twyman, J. Opt. Soc. Am. 7, 635 (1913).
    [Crossref]
  17. A. A. Michelson, Astro. Journal 47, 283 (1918).
    [Crossref]
  18. Rayleigh, Phil. Mag. 8, 403 (1879).
    [Crossref]
  19. A. E. Conrady, Mon. Not. R.A.S. 79, 575 (1918).
  20. E. M. Brumberg, Nature 152, 357 (1943).
    [Crossref]
  21. E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).
  22. K. P. Norris, in preparation.

1949 (4)

D. S. Grey, J. Opt. Soc. Am. 39, 723 (1949).
[Crossref] [PubMed]

B. K. Johnson, J. Sci. Instr. 26, 128 (1949). Proc. Phys. Soc. 57, 1034 (1949).
[Crossref]

W. E. Seeds and M. H. F. Wilkins, Nature 164, 228 (1949).
[Crossref]

H. Osterberger and J. E. Wilkins, J. Opt. Soc. Am. 39, 553 (1949).
[Crossref]

1943 (3)

C. R. Burch, Proc. Phys. Soc. 55, 433 (1943).
[Crossref]

C. R. Burch, Nature 152, 748 (1943); Proc. Phys. Soc. 59, 41 (1947).
[Crossref]

E. M. Brumberg, Nature 152, 357 (1943).
[Crossref]

1941 (2)

E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).

E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).

1938 (1)

H. E. Dall, J. Brit. Ast. Ass. 48, 163 (1938).

1918 (2)

A. E. Conrady, Mon. Not. R.A.S. 79, 575 (1918).

A. A. Michelson, Astro. Journal 47, 283 (1918).
[Crossref]

1913 (1)

1905 (1)

K. Schwarzschild, Theorie der Spiegeteleskop(1905).

1879 (2)

Rayleigh, Phil. Mag. 8, 261 (1879).
[Crossref]

Rayleigh, Phil. Mag. 8, 403 (1879).
[Crossref]

1738 (1)

R. Smith, Complete System of Optics (1738).

Bouwers, A.

A. Bouwers, Achievements in Optics (Elsevier Publishing Company, Inc., Amsterdam, 1946).

Brumberg, E. M.

E. M. Brumberg, Nature 152, 357 (1943).
[Crossref]

E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).

E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).

Burch, C. R.

C. R. Burch, Nature 152, 748 (1943); Proc. Phys. Soc. 59, 41 (1947).
[Crossref]

C. R. Burch, Proc. Phys. Soc. 55, 433 (1943).
[Crossref]

Conrady, A. E.

A. E. Conrady, Mon. Not. R.A.S. 79, 575 (1918).

Dall, H. E.

H. E. Dall, J. Brit. Ast. Ass. 48, 163 (1938).

Dunham, T.

T. Dunham, private communication, 1948.

Grey, D. S.

Johnson, B. K.

B. K. Johnson, J. Sci. Instr. 26, 128 (1949). Proc. Phys. Soc. 57, 1034 (1949).
[Crossref]

Maksutov, D. D.

D. D. Maksutov, U.S.S.R. Pat. No. 40859 (1932).

Michelson, A. A.

A. A. Michelson, Astro. Journal 47, 283 (1918).
[Crossref]

Norris, K. P.

K. P. Norris, in preparation.

Osterberger, H.

Rayleigh,

Rayleigh, Phil. Mag. 8, 403 (1879).
[Crossref]

Rayleigh, Phil. Mag. 8, 261 (1879).
[Crossref]

Schwarzschild, K.

K. Schwarzschild, Theorie der Spiegeteleskop(1905).

Seeds, W. E.

W. E. Seeds and M. H. F. Wilkins, Nature 164, 228 (1949).
[Crossref]

Smith, R.

R. Smith, Complete System of Optics (1738).

Twyman, F.

Wilkins, J. E.

Wilkins, M. H. F.

W. E. Seeds and M. H. F. Wilkins, Nature 164, 228 (1949).
[Crossref]

Wynne, G. G.

G. G. Wynne, private communication.

Astro. Journal (1)

A. A. Michelson, Astro. Journal 47, 283 (1918).
[Crossref]

C.R. Acad. Sci. U.S.S.R. (2)

E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).

E. M. Brumberg, C.R. Acad. Sci. U.S.S.R. 32, 486 (1941).

Complete System of Optics (1)

R. Smith, Complete System of Optics (1738).

J. Brit. Ast. Ass. (1)

H. E. Dall, J. Brit. Ast. Ass. 48, 163 (1938).

J. Opt. Soc. Am. (3)

J. Sci. Instr. (1)

B. K. Johnson, J. Sci. Instr. 26, 128 (1949). Proc. Phys. Soc. 57, 1034 (1949).
[Crossref]

Mon. Not. R.A.S. (1)

A. E. Conrady, Mon. Not. R.A.S. 79, 575 (1918).

Nature (3)

E. M. Brumberg, Nature 152, 357 (1943).
[Crossref]

W. E. Seeds and M. H. F. Wilkins, Nature 164, 228 (1949).
[Crossref]

C. R. Burch, Nature 152, 748 (1943); Proc. Phys. Soc. 59, 41 (1947).
[Crossref]

Phil. Mag. (2)

Rayleigh, Phil. Mag. 8, 261 (1879).
[Crossref]

Rayleigh, Phil. Mag. 8, 403 (1879).
[Crossref]

Proc. Phys. Soc. (1)

C. R. Burch, Proc. Phys. Soc. 55, 433 (1943).
[Crossref]

Theorie der Spiegeteleskop (1)

K. Schwarzschild, Theorie der Spiegeteleskop(1905).

Other (5)

D. D. Maksutov, U.S.S.R. Pat. No. 40859 (1932).

G. G. Wynne, private communication.

T. Dunham, private communication, 1948.

A. Bouwers, Achievements in Optics (Elsevier Publishing Company, Inc., Amsterdam, 1946).

K. P. Norris, in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Path of light through reflecting objective.

Fig. 2
Fig. 2

Variation of intensity in diffraction pattern of point object, for various central obstructions: A No central obstruction; B 30 percent central obstruction; C 40 percent central obstruction; D 45 percent central obstruction.

Fig. 3
Fig. 3

Bean root-tip after Feulgen hydrolysis (no staining) 2650A; n.a. 0.5; 45 percent central obstruction X~800.

Fig. 4
Fig. 4

Idealized interferograms.

Fig. 5
Fig. 5

Interferograms of various objectives. (Central obstruction values (c.o.) are given in percent.)

Fig. 6
Fig. 6

Interferograms of various objectives.

Fig. 7
Fig. 7

Simple mechanical design of convex mirror mounting.

Fig. 8
Fig. 8

Complete objective with dust cover removed.

Fig. 9
Fig. 9

Mechanical design of objective.

Fig. 10
Fig. 10

Stops in reflecting microscope.

Fig. 11
Fig. 11

Arrangement for visible phase contrast illumination: A Phase annulus; B Field stop; C Condenser; D Objective; E Phase plate (λ/4).

Fig. 12
Fig. 12

Microscope stand.

Fig. 13
Fig. 13

Reflecting microscope.

Tables (2)

Tables Icon

Table I Errors in wave front of 2 objectives measured from interferograms of Fig. 4 (λ=5461A).

Tables Icon

Table II Dimensions of reflecting objectives: (Field diameter measured at 5461A. Working distance and separation of mirrors are given approximately).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R = μ 2 μ 1 u 2 f 2 ( x + u ) 2 t ,