Abstract

Density measurements used in the sensitometry of color films can be divided into two broad classes: Integral densitometry, which provides a description of the multilayer image as a whole in terms of its absorptions; and analytical densitometry, which gives a description of the image in terms of its components by determining their individual density values. Each class contains subclasses formed by special definitions of density. Terms and units are defined for each class and subclass; for each one, the field of usefulness and methods of measurement are briefly discussed.

© 1950 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. G. Frayne, J. Soc. Mot. Pict. Eng. 36, 622 (1941).
  2. R. M. Evans, J. Soc. Mot. Pict. Eng. 31, 194 (1938).
  3. G. Heymer and D. Sundhoff, Veröffentl. wiss. Zentral-Labs. phot. Abt. I. G. Farbenind. Akt-Ges. AGFA 5, 62 (1937).

1941 (1)

J. G. Frayne, J. Soc. Mot. Pict. Eng. 36, 622 (1941).

1938 (1)

R. M. Evans, J. Soc. Mot. Pict. Eng. 31, 194 (1938).

1937 (1)

G. Heymer and D. Sundhoff, Veröffentl. wiss. Zentral-Labs. phot. Abt. I. G. Farbenind. Akt-Ges. AGFA 5, 62 (1937).

Evans, R. M.

R. M. Evans, J. Soc. Mot. Pict. Eng. 31, 194 (1938).

Frayne, J. G.

J. G. Frayne, J. Soc. Mot. Pict. Eng. 36, 622 (1941).

Heymer, G.

G. Heymer and D. Sundhoff, Veröffentl. wiss. Zentral-Labs. phot. Abt. I. G. Farbenind. Akt-Ges. AGFA 5, 62 (1937).

Sundhoff, D.

G. Heymer and D. Sundhoff, Veröffentl. wiss. Zentral-Labs. phot. Abt. I. G. Farbenind. Akt-Ges. AGFA 5, 62 (1937).

J. Soc. Mot. Pict. Eng. (2)

J. G. Frayne, J. Soc. Mot. Pict. Eng. 36, 622 (1941).

R. M. Evans, J. Soc. Mot. Pict. Eng. 31, 194 (1938).

Veröffentl. wiss. Zentral-Labs. phot. Abt. I. G. Farbenind. Akt-Ges. AGFA (1)

G. Heymer and D. Sundhoff, Veröffentl. wiss. Zentral-Labs. phot. Abt. I. G. Farbenind. Akt-Ges. AGFA 5, 62 (1937).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

A classification of color densities.

Fig. 2
Fig. 2

A typical determination of the spectral transmittance distribution of a filter required for a densitometer to measure printing densities. (a) Light sources in printer and in densitometer are in this case the same; Jλ and Jλ′ cancel. Relative eλ is shown; it is largely governed by use of a Wratten No. 60 filter in this printer. Sλ shows relative spectral sensitivities of print film. 10× the product eλSλ is shown. (b) Fixed densitometer factors Zλ (relative spectral efficiency) and Sλ′ (photo-tube sensitivity) are shown, and their product. (c) The product of the printer terms is, divided by product of densitometer fixed terms to determine required distribution of filter transmittance.

Fig. 3
Fig. 3

Spectral density curves of (N) a gray area of a processed image in a typical multilayer subtractive color film, and of the (Y) yellow, (M) magenta, and (C) cyan component absorbers which combine to form the gray image.

Fig. 4
Fig. 4

Gray-scale characteristic curves of a sample of a professional sheet color film, using equivalent neutral density units for the density ordinate scale.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

D = log 10 ( 1 / T ) ,
D = log 10 ( P 0 / P t ) ,
D p = log 10 ( ϕ 0 / ϕ t ) ,
J λ e λ S λ ( T λ ) d λ J λ e λ S λ d λ ,
J λ e λ S λ ( T λ ) d λ J λ e λ S λ d λ .
J λ e λ S λ = k ( J λ e λ S λ )
e λ = k J λ e λ S λ J λ S λ .
t λ = k J λ e λ S λ J λ S λ Z λ .
D λ = log 10 P 0 ( λ ) P t ( λ ) ,
D = log 10 J λ e λ S λ d λ J λ e λ S λ T λ d λ .