Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Wood, Physical Optics, second edition (Macmillan, 1924), p. 129.
  2. The velocity of the capillary waves (c) varies with their frequency. For the single hole disk (30 pulses per second) the wave velocity with a relative motion of jets and mercury (v) of 11.3 cm per sec. was measured from the photographs as 22 cm/sec.
  3. P. Drude, Lehrbuch der Optik (Hirzel, Leipzig, 1900), p. 114.
  4. Figures 21 and 22 thus supersede Figs. 6 and 7 as faithful representations of the interference system.
  5. Nordmeyer, Ann. d. Physik [5] 11, 284 (1903).
    [Crossref]
  6. H. A. Lorentz, Kgl. Akad. d. Wiss. Amst. p. 678 (1902).
  7. A. H. Bucherer, Ann. d. Physik [5] 11, 270 (1903).
    [Crossref]
  8. H. E. Ives, J. Opt. Soc. Am. 27, 267–73 (1937).

1937 (1)

H. E. Ives, J. Opt. Soc. Am. 27, 267–73 (1937).

1903 (2)

A. H. Bucherer, Ann. d. Physik [5] 11, 270 (1903).
[Crossref]

Nordmeyer, Ann. d. Physik [5] 11, 284 (1903).
[Crossref]

1902 (1)

H. A. Lorentz, Kgl. Akad. d. Wiss. Amst. p. 678 (1902).

Bucherer, A. H.

A. H. Bucherer, Ann. d. Physik [5] 11, 270 (1903).
[Crossref]

Drude, P.

P. Drude, Lehrbuch der Optik (Hirzel, Leipzig, 1900), p. 114.

Ives, H. E.

H. E. Ives, J. Opt. Soc. Am. 27, 267–73 (1937).

Lorentz, H. A.

H. A. Lorentz, Kgl. Akad. d. Wiss. Amst. p. 678 (1902).

Nordmeyer,

Nordmeyer, Ann. d. Physik [5] 11, 284 (1903).
[Crossref]

Wood, R. W.

R. W. Wood, Physical Optics, second edition (Macmillan, 1924), p. 129.

Ann. d. Physik [5] (2)

Nordmeyer, Ann. d. Physik [5] 11, 284 (1903).
[Crossref]

A. H. Bucherer, Ann. d. Physik [5] 11, 270 (1903).
[Crossref]

J. Opt. Soc. Am. (1)

H. E. Ives, J. Opt. Soc. Am. 27, 267–73 (1937).

Kgl. Akad. d. Wiss. Amst. (1)

H. A. Lorentz, Kgl. Akad. d. Wiss. Amst. p. 678 (1902).

Other (4)

R. W. Wood, Physical Optics, second edition (Macmillan, 1924), p. 129.

The velocity of the capillary waves (c) varies with their frequency. For the single hole disk (30 pulses per second) the wave velocity with a relative motion of jets and mercury (v) of 11.3 cm per sec. was measured from the photographs as 22 cm/sec.

P. Drude, Lehrbuch der Optik (Hirzel, Leipzig, 1900), p. 114.

Figures 21 and 22 thus supersede Figs. 6 and 7 as faithful representations of the interference system.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (24)

Fig. 1
Fig. 1

Diagram of apparatus for photographing wave phenomena on mercury surface with relative motion of source of waves and liquid.

Fig. 2
Fig. 2

Photograph of apparatus.

Fig. 3
Fig. 3

Photograph of apparatus.

Fig. 4
Fig. 4

Capillary wave system set up by single jet, stationary condition. Stroboscopic illumination. Air pulses, 30 per second.

Fig. 5
Fig. 5

Capillary wave system set up by a single jet; relative velocity of jet and mercury surface 11.3 cm per sec. (v/c=0.51). Stroboscopic illumination. Air pulses, 30 per second.

Fig. 6
Fig. 6

Interference bands between tvo sources; stationary condition; continuous illumination. Air pulses, 60 per second.

Fig. 7
Fig. 7

Interference bands between two sources; relative speed of sources and liquid, 14.4 cm per second; continuous illumination. Air pulses, 60 per second.

Fig. 8
Fig. 8

Comparison of interference band spacing for stationary (upper) and moving (lower) condition.

Fig. 9
Fig. 9

Graphical representation of interference system between wave source and mirror, with stationary medium.

Fig. 10
Fig. 10

Graphical representation of interference system between wave source and mirror, with moving medium.

Fig. 11
Fig. 11

Graphical representation of interference system between wave source and mirror, with moving medium; frequency of source reduced to restore stationary separation of bands along normal between source and mirror.

Fig. 12
Fig. 12

Position and shape of single interference band of system between source and mirror. A, stationary medium; B, moving medium; C, moving medium, with frequency of source reduced to restore stationary condition along normal between source and mirror.

Fig. 13
Fig. 13

Production of constructive interference between two sources; medium stationary.

Fig. 14
Fig. 14

Production of constructive interference between two sources; medium moving.

Fig. 15(a)
Fig. 15(a)

Stationary waves produced by high air pressure, stationary medium, continuous illumination. Pulse frequency, 90 per second.

Fig. 15(b)
Fig. 15(b)

Stationary waves produced by high air pressure, moving medium, continuous illumination. Pulse frequency, 90 per second; relative velocity of medium and source, 11.3 cm per second.

Fig. 16
Fig. 16

High air pressure interference pattern between two jets with moving medium.

Fig. 17(a)
Fig. 17(a)

Ripple pattern between two jets; stationary medium.

Fig. 17(b)
Fig. 17(b)

Ripple pattern between two jets, medium moving parallel to line between jets.

Fig. 18
Fig. 18

Capillary wave system from two sources; relative speed of sources and medium 16 cm per second (v/c=0.725). Pulse frequency, 30 per second. Symmetrical dark ground illumination.

Fig. 19
Fig. 19

Interference fringes from two sources, stationary condition; pulse frequency, 30 per second; dark ground illumination giving light deviation perpendicular to line joining sources.

Fig. 20
Fig. 20

Interference fringes from two sources; relative speed of sources and medium 16 cm per second (v/c=0.725); illumination conditions as in Fig. 19.

Fig. 21
Fig. 21

Same as Fig. 19 except dark ground illumination arranged to deviate light parallel to line joining sources.

Fig. 22
Fig. 22

Same as Fig. 20 except dark ground illumination arranged to deviate light parallel to line joining sources.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

λ s 1 + ( v / c )             and             λ s 1 - ( v / c ) ,
[ ( d 2 + x ) 2 + y 2 ] 1 2 - [ ( d 2 - x ) 2 + y 2 ] 1 2 = c ( t 1 - t 2 ) = n τ c ,
t 1 = [ ( d 2 + x ) 2 + ( y - v t 1 ) 2 c ] 1 2
t 1 = - y v c 2 ( 1 - ( v 2 / c 2 ) ) 1 2 + 1 c [ ( d 2 + x ) 2 + y 2 1 - ( v 2 / c 2 ) ] 1 2 ( 1 - ( v 2 / c 2 ) ) 1 2
t 2 = - y v c 2 ( 1 - ( v 2 / c 2 ) ) 1 2 + 1 c [ ( d 2 - x ) 2 + y 2 1 - ( v 2 / c 2 ) ] 1 2 ( 1 - ( v 2 / c 2 ) ) 1 2 ,
c ( t 1 - t 2 ) = [ ( d 2 + x ) 2 + y 2 1 - ( v 2 / c 2 ) ] 1 2 - [ ( d 2 - x ) 2 + y 2 1 - ( v 2 / c 2 ) ] 1 2 ( 1 - ( v 2 / c 2 ) ) 1 2 ,
y = y ( 1 - ( v 2 / c 2 ) ) 1 2 , τ = τ ( 1 - ( v 2 / c 2 ) ) 1 2 ,
c ( t 1 - t 2 ) = n τ c = [ ( d 2 + x ) 2 + y 2 ] 1 2 - [ ( d 2 - x ) 2 + y 2 ] 1 2 ,
( 1 - v 2 c 2 ) 1 2 : 1 ,
1 ( 1 - v 2 c 2 ) 1 2 : 1 ,
( 1 - v 2 c 2 ) 1 2 : 1.
( 1 - v c ) 1 2 : 1.
S = 2 A sin 2 π τ ( t - x V ) × cos π [ t ( 1 τ 1 - 1 τ 2 ) - x ( 1 τ 1 c 1 - 1 τ 2 c 2 ) ] ,
1 τ = 1 2 ( 1 τ 1 + 1 τ 2 ) ,             1 V = 1 2 τ ( 1 τ 1 c 1 + 1 τ 2 c 2 ) .
S = 2 A sin 2 π τ ( t - x V ) cos π x τ 1 [ 1 c 2 - 1 c 1 ] .
x = 2 n τ [ c 1 c 2 c 1 - c 2 ] ,             n = 0 , 1 , 2 , etc .
x = 2 n τ [ ( c 1 + v ) ( c 2 + v ) ( c 1 + v ) - ( c 2 + v ) ] = 2 n τ [ c 1 c 2 + v ( c 1 + c 2 ) + v 2 c 1 - c 2 ] .
c = c μ
x = 2 n τ [ c μ - 1 ] ,             n = 0 , 1 , 2 , etc .
x = 2 n τ [ ( c + v ) ( c + v ) c - c ] .
τ ( 1 - v 2 / c 2 ) 1 2 ,
1 ( 1 - v 2 / c 2 ) 1 2 : 1 ,
x = 2 n τ 1 - v 2 / c 2 [ ( c + v ) ( c + v ) c - c ] .
2 n τ [ c μ - 1 ] = 2 n τ ( 1 - v 2 / c 2 ) [ ( c + v ) ( c + v ) c - c ]
c = c / μ - v 1 - v / c μ ,
c = c μ - v ( 1 - 1 μ 2 )
x = v c ( d 2 4 + y 2 ) 1 2 .
x = v c [ d 2 2 + y 2 1 - v 2 / c 2 ] 1 2 .
x y = tan = v c [ 1 - v 2 / c 2 ] 1 2 .
sin - 1 v c = tan - 1 v c [ 1 - v 2 / c 2 ] 1 2 .
( c ± v c ) U s ,