Abstract

Using apparatus designed by Priest and Gibson, the writer has determined sensibility to wave-length difference for his right eye: (1) For stimuli of unit purity (spectral light) from 450 to 645 mμ. (2) For stimuli consisting of artificial noon sunlight plus homogeneous light of some selected wave-length, the wave-lengths being 455, 470, 481.5, 493, 530, 580, 635 mμ, and the purities ranging from unity to a few percent. (3) For stimuli consisting of homogeneous light of wave-length 455 plus some one of heterogeneous stimuli specified as follows: (a) equal energy, (b) color temperature 2570°K, (c) color temperature over 24,000°K. (4) For a stimulus consisting of homogeneous light of wave-length 530 mμ plus heterogeneous light of color temperature over 24,000°K. The results of (1) are concordant with previous determinations by others. The least perceptible difference (LPD) in wave-length for (2) shows, for wave-lengths 635, 580, 530 and 493 mμ at first a slow and then, near zero purity, a rapid increase as purity is decreased. For wave-length 455 mμ with decreasing purity, the LPD at first increases and then decreases to a pronounced minimum at about fifteen percent purity, increasing rapidly beyond this. Wave-lengths 470 and 481.5 mμ show a similar but less marked effect. The experiments noted under (3) and (4) were undertaken in order to study the effect of the spectral distribution of the heterogeneous stimulus in modifying the peculiar results just described for wave-lengths less than 482 mμ. It is shown that the form of the curve showing LPD as a function of purity depends upon the spectral distribution of the heterogeneous stimulus. Two hypotheses are proposed to account for the peculiar results for short wave-lengths.

© 1933 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. König and Dieterici, Graefe’s Arch. f. Opht. Abt. [2] 30, 171 (1884). König, Arch. f. Anat. u. Physiol. 160 (1885). Uhthoff, Graefe’s Arch. f. Opht., Abt. 4,  34, 1 (1888). Brodhun, Zeits. f. Psych. u. Physiol. d. Sinnesorg. 3, 97 (1892). Exner, Wien, Sitzb. 2A,  111, 875 (1902). Steindler: Wien, Sitzb. 2A,  115, 39 (1906). Jones, J. Opt. Soc. Am. 1, 63 (1917). Laurens and Hamilton, Am. J. Physiol. 65, 547 (1923). Hamilton and Laurens, Am. J. Physiol. 65, 569 (1923).
    [Crossref]
  2. Troland, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 544 (1922).
  3. Watson, Proc. Roy. Soc. B84, 118 (1911).
    [Crossref]
  4. The apparatus was designed and assembled by Irwin G. Priest and K. S. Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 136 (1927).
  5. Tafeln zur Untersuchung des Farbenunterscheidungs-Vermögens, W. Nagel, 7th Edition, Bergmann, Wiesbaden, 1911.
  6. Pseudo-Isochromatische Tafeln zur Prüfung des Farbensinnes, J. Stilling, 14th Edition, Leipzig, 1913.
  7. Rayleigh, Nature,  25, 64 (1881). Nagel, Zeits. f. Augenheilkunde 17, 201 (1907). Rosmanit, Anleitung zur Feststellung der Farbentüichtigkeit, Leipzig, 1914.
    [Crossref]
  8. Rosmanit, reference 7, pp. 76–79.
  9. Tests by Priest at the Bureau of Standards, June–September, 1926.
  10. Gibson and Tyndall, , 156 (1923), Observer No. 1.
  11. The unit used is the photon as defined by Troland, Trans. Illum. Eng. Soc. 11, 950 (see footnote 1) (1916).
  12. Reference 10, p. 142 and Fig. 22.
  13. Troland, Trans. Illum. Eng. Soc. 11, 955 (1916), gives 60 photons as a lower limit.
  14. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 479 (1926). Judd, B. S. J. Research 4, 524 (1930).
  15. Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 305 (1926).
  16. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1184 (1923).
  17. K. S. Gibson and F. G. Brickwedde.
  18. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1175 (1923).
    [Crossref]
  19. It should be mentioned that the 1000-watt lamp did not stay constant throughout its use. With the daylight filter it was color-matched, as stated before, at the start of this work with Abbot-Priest sunlight, approximately equivalent to a color temperature of 5325°K, but at the completion of the experimental work, its color temperature with the same filter was found to be 5820°K, a rise of about 500°K. The color temperature of the lamp alone was found at this time to be 2650°K. By using the spectral centroid relation, Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 473 (1925), the original color temperature of the lamp alone was computed to be 2570°K, and it is the relative energy for this temperature which is given by curve 1 in Fig. 3. The reason for using the initial rather than the final distribution of energy of the lamp is that the parallel change of brightness, of which a continuous record was made in terms of the comparison lamp, was very small during the period that the heterogeneous stimulus matching Abbot-Priest sunlight was used. The exact specification of the other heterogeneous stimuli is not important.
    [Crossref]
  20. Reference 1, p. 559.
  21. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).
  22. Haupt, J. Exp. Psych. 5, 347 (1922).
    [Crossref]
  23. Purdy, Brit. J. Psych. 21, part 3, 283 (1931).
  24. Cf. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).
  25. Judd, J. Opt. Soc. Am. 22, 72 (1932).
    [Crossref]

1932 (1)

1931 (1)

Purdy, Brit. J. Psych. 21, part 3, 283 (1931).

1927 (1)

The apparatus was designed and assembled by Irwin G. Priest and K. S. Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 136 (1927).

1926 (4)

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 479 (1926). Judd, B. S. J. Research 4, 524 (1930).

Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 305 (1926).

Cf. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).

1925 (1)

It should be mentioned that the 1000-watt lamp did not stay constant throughout its use. With the daylight filter it was color-matched, as stated before, at the start of this work with Abbot-Priest sunlight, approximately equivalent to a color temperature of 5325°K, but at the completion of the experimental work, its color temperature with the same filter was found to be 5820°K, a rise of about 500°K. The color temperature of the lamp alone was found at this time to be 2650°K. By using the spectral centroid relation, Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 473 (1925), the original color temperature of the lamp alone was computed to be 2570°K, and it is the relative energy for this temperature which is given by curve 1 in Fig. 3. The reason for using the initial rather than the final distribution of energy of the lamp is that the parallel change of brightness, of which a continuous record was made in terms of the comparison lamp, was very small during the period that the heterogeneous stimulus matching Abbot-Priest sunlight was used. The exact specification of the other heterogeneous stimuli is not important.
[Crossref]

1923 (2)

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1184 (1923).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1175 (1923).
[Crossref]

1922 (2)

Troland, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 544 (1922).

Haupt, J. Exp. Psych. 5, 347 (1922).
[Crossref]

1916 (2)

The unit used is the photon as defined by Troland, Trans. Illum. Eng. Soc. 11, 950 (see footnote 1) (1916).

Troland, Trans. Illum. Eng. Soc. 11, 955 (1916), gives 60 photons as a lower limit.

1911 (1)

Watson, Proc. Roy. Soc. B84, 118 (1911).
[Crossref]

1884 (1)

König and Dieterici, Graefe’s Arch. f. Opht. Abt. [2] 30, 171 (1884). König, Arch. f. Anat. u. Physiol. 160 (1885). Uhthoff, Graefe’s Arch. f. Opht., Abt. 4,  34, 1 (1888). Brodhun, Zeits. f. Psych. u. Physiol. d. Sinnesorg. 3, 97 (1892). Exner, Wien, Sitzb. 2A,  111, 875 (1902). Steindler: Wien, Sitzb. 2A,  115, 39 (1906). Jones, J. Opt. Soc. Am. 1, 63 (1917). Laurens and Hamilton, Am. J. Physiol. 65, 547 (1923). Hamilton and Laurens, Am. J. Physiol. 65, 569 (1923).
[Crossref]

1881 (1)

Rayleigh, Nature,  25, 64 (1881). Nagel, Zeits. f. Augenheilkunde 17, 201 (1907). Rosmanit, Anleitung zur Feststellung der Farbentüichtigkeit, Leipzig, 1914.
[Crossref]

Brickwedde, F. G.

K. S. Gibson and F. G. Brickwedde.

Dieterici,

König and Dieterici, Graefe’s Arch. f. Opht. Abt. [2] 30, 171 (1884). König, Arch. f. Anat. u. Physiol. 160 (1885). Uhthoff, Graefe’s Arch. f. Opht., Abt. 4,  34, 1 (1888). Brodhun, Zeits. f. Psych. u. Physiol. d. Sinnesorg. 3, 97 (1892). Exner, Wien, Sitzb. 2A,  111, 875 (1902). Steindler: Wien, Sitzb. 2A,  115, 39 (1906). Jones, J. Opt. Soc. Am. 1, 63 (1917). Laurens and Hamilton, Am. J. Physiol. 65, 547 (1923). Hamilton and Laurens, Am. J. Physiol. 65, 569 (1923).
[Crossref]

Gibson,

Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 305 (1926).

It should be mentioned that the 1000-watt lamp did not stay constant throughout its use. With the daylight filter it was color-matched, as stated before, at the start of this work with Abbot-Priest sunlight, approximately equivalent to a color temperature of 5325°K, but at the completion of the experimental work, its color temperature with the same filter was found to be 5820°K, a rise of about 500°K. The color temperature of the lamp alone was found at this time to be 2650°K. By using the spectral centroid relation, Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 473 (1925), the original color temperature of the lamp alone was computed to be 2570°K, and it is the relative energy for this temperature which is given by curve 1 in Fig. 3. The reason for using the initial rather than the final distribution of energy of the lamp is that the parallel change of brightness, of which a continuous record was made in terms of the comparison lamp, was very small during the period that the heterogeneous stimulus matching Abbot-Priest sunlight was used. The exact specification of the other heterogeneous stimuli is not important.
[Crossref]

Gibson and Tyndall, , 156 (1923), Observer No. 1.

Gibson, K. S.

The apparatus was designed and assembled by Irwin G. Priest and K. S. Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 136 (1927).

K. S. Gibson and F. G. Brickwedde.

Haupt,

Haupt, J. Exp. Psych. 5, 347 (1922).
[Crossref]

Judd,

König,

König and Dieterici, Graefe’s Arch. f. Opht. Abt. [2] 30, 171 (1884). König, Arch. f. Anat. u. Physiol. 160 (1885). Uhthoff, Graefe’s Arch. f. Opht., Abt. 4,  34, 1 (1888). Brodhun, Zeits. f. Psych. u. Physiol. d. Sinnesorg. 3, 97 (1892). Exner, Wien, Sitzb. 2A,  111, 875 (1902). Steindler: Wien, Sitzb. 2A,  115, 39 (1906). Jones, J. Opt. Soc. Am. 1, 63 (1917). Laurens and Hamilton, Am. J. Physiol. 65, 547 (1923). Hamilton and Laurens, Am. J. Physiol. 65, 569 (1923).
[Crossref]

Nagel, W.

Tafeln zur Untersuchung des Farbenunterscheidungs-Vermögens, W. Nagel, 7th Edition, Bergmann, Wiesbaden, 1911.

Priest,

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 479 (1926). Judd, B. S. J. Research 4, 524 (1930).

Cf. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1175 (1923).
[Crossref]

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1184 (1923).

Priest, Irwin G.

The apparatus was designed and assembled by Irwin G. Priest and K. S. Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 136 (1927).

Purdy,

Purdy, Brit. J. Psych. 21, part 3, 283 (1931).

Rayleigh,

Rayleigh, Nature,  25, 64 (1881). Nagel, Zeits. f. Augenheilkunde 17, 201 (1907). Rosmanit, Anleitung zur Feststellung der Farbentüichtigkeit, Leipzig, 1914.
[Crossref]

Rosmanit,

Rosmanit, reference 7, pp. 76–79.

Stilling, J.

Pseudo-Isochromatische Tafeln zur Prüfung des Farbensinnes, J. Stilling, 14th Edition, Leipzig, 1913.

Troland,

Troland, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 544 (1922).

The unit used is the photon as defined by Troland, Trans. Illum. Eng. Soc. 11, 950 (see footnote 1) (1916).

Troland, Trans. Illum. Eng. Soc. 11, 955 (1916), gives 60 photons as a lower limit.

Tyndall,

Gibson and Tyndall, , 156 (1923), Observer No. 1.

Watson,

Watson, Proc. Roy. Soc. B84, 118 (1911).
[Crossref]

Brit. J. Psych. (1)

Purdy, Brit. J. Psych. 21, part 3, 283 (1931).

Graefe’s Arch. f. Opht. Abt. [2] (1)

König and Dieterici, Graefe’s Arch. f. Opht. Abt. [2] 30, 171 (1884). König, Arch. f. Anat. u. Physiol. 160 (1885). Uhthoff, Graefe’s Arch. f. Opht., Abt. 4,  34, 1 (1888). Brodhun, Zeits. f. Psych. u. Physiol. d. Sinnesorg. 3, 97 (1892). Exner, Wien, Sitzb. 2A,  111, 875 (1902). Steindler: Wien, Sitzb. 2A,  115, 39 (1906). Jones, J. Opt. Soc. Am. 1, 63 (1917). Laurens and Hamilton, Am. J. Physiol. 65, 547 (1923). Hamilton and Laurens, Am. J. Physiol. 65, 569 (1923).
[Crossref]

J. Exp. Psych. (1)

Haupt, J. Exp. Psych. 5, 347 (1922).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. and Rev. Sci. Inst. (9)

Cf. Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 306 (1926).

Troland, J. Opt. Soc. Am. and Rev. Sci. Inst. 6, 544 (1922).

The apparatus was designed and assembled by Irwin G. Priest and K. S. Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 14, 136 (1927).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 12, 479 (1926). Judd, B. S. J. Research 4, 524 (1930).

Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 13, 305 (1926).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1184 (1923).

Priest, J. Opt. Soc. Am. and Rev. Sci. Inst. 7, 1175 (1923).
[Crossref]

It should be mentioned that the 1000-watt lamp did not stay constant throughout its use. With the daylight filter it was color-matched, as stated before, at the start of this work with Abbot-Priest sunlight, approximately equivalent to a color temperature of 5325°K, but at the completion of the experimental work, its color temperature with the same filter was found to be 5820°K, a rise of about 500°K. The color temperature of the lamp alone was found at this time to be 2650°K. By using the spectral centroid relation, Gibson, J. Opt. Soc. Am. and Rev. Sci. Inst. 11, 473 (1925), the original color temperature of the lamp alone was computed to be 2570°K, and it is the relative energy for this temperature which is given by curve 1 in Fig. 3. The reason for using the initial rather than the final distribution of energy of the lamp is that the parallel change of brightness, of which a continuous record was made in terms of the comparison lamp, was very small during the period that the heterogeneous stimulus matching Abbot-Priest sunlight was used. The exact specification of the other heterogeneous stimuli is not important.
[Crossref]

Nature (1)

Rayleigh, Nature,  25, 64 (1881). Nagel, Zeits. f. Augenheilkunde 17, 201 (1907). Rosmanit, Anleitung zur Feststellung der Farbentüichtigkeit, Leipzig, 1914.
[Crossref]

Proc. Roy. Soc. (1)

Watson, Proc. Roy. Soc. B84, 118 (1911).
[Crossref]

Trans. Illum. Eng. Soc. (2)

The unit used is the photon as defined by Troland, Trans. Illum. Eng. Soc. 11, 950 (see footnote 1) (1916).

Troland, Trans. Illum. Eng. Soc. 11, 955 (1916), gives 60 photons as a lower limit.

Other (8)

Reference 10, p. 142 and Fig. 22.

Reference 1, p. 559.

K. S. Gibson and F. G. Brickwedde.

Tafeln zur Untersuchung des Farbenunterscheidungs-Vermögens, W. Nagel, 7th Edition, Bergmann, Wiesbaden, 1911.

Pseudo-Isochromatische Tafeln zur Prüfung des Farbensinnes, J. Stilling, 14th Edition, Leipzig, 1913.

Rosmanit, reference 7, pp. 76–79.

Tests by Priest at the Bureau of Standards, June–September, 1926.

Gibson and Tyndall, , 156 (1923), Observer No. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Horizontal section of the apparatus.

Fig. 2
Fig. 2

Special collimator slit divided into fixed and movable halves. Designed by Irwin G. Priest.

Fig. 3
Fig. 3

Relative energy of heterogeneous stimuli. Curve 1. 1000-watt lamp alone, color temperature 2570°K. Curve 2. 1000-watt lamp and one daylight filter; a color match for Abbot-Priest sunlight. Curve 3. A color match for an equal-energy stimulus. Curve 4. 1000-watt lamp and two daylight filters, color temperature above 24,000°K. Curve 5. Abbot-Priest sunlight.

Fig. 4
Fig. 4

Least perceptible difference for unit purity.

Fig. 5
Fig. 5

Least perceptible difference as a function of purity. The heterogeneous stimulus has the energy distribution of curve 2, Fig. 3, except for 530B for which it is that of curve 4, Fig. 3. Wave-length of the homogeneous stimulus is indicated on curves.

Fig. 6
Fig. 6

Relative least perceptible difference. Wave-lengths are marked on curves. Watson’s results are shown by: circles, wave-length 589 mμ, plus signs, wave-length 632 mμ, triangles, wave-length 527 mμ.

Fig. 7
Fig. 7

Effect of varying the heterogeneous stimulus for wave-length 455 mμ. The heterogeneous stimuli are as follows: S, artificial noon sunlight, curve 2, Fig. 3. Y, color temperature 2570°K, curve 1, Fig. 3. B, color temperature above 24,000°K, curve 4, Fig. 3. E, “equal energy,” curve 3, Fig. 3.