Abstract

The relative intensities of the lines in 26 of the stronger multiplets of the spectrum of normal titanium, Ti I, and in 8 of the stronger multiplets due to the singly ionized atom, Ti II, were measured by a general method of photographic photometry which is described in detail. In Ti I, 58% of the multiplets were found to obey the intensity formulas to well within 5%, while in the 42% of abnormal multiplets, 71% of the lines were found normal, with 16% abnormally weak and 13% abnormally strong. In Ti II, 62% of the multiplets measured were normal, while of the abnormal 38%, 61% of the lines were normal, with 21% abnormally weak and 18% abnormally strong. Of all the lines measured, 86% appeared normal in intensity, while 7.6% were too weak and 6.4% were too strong. The departures from the predicted intensities are often fairly large, generally being of the order of 10% to 40%. No definite correlation was found between intensity abnormalities and depatures from Lande’s interval rule or the normal Zeeman patterns.

© 1928 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. N. Russell, Astrophysical Journal,  66, pp. 283–328, 347–438; 1927.
    [CrossRef]
  2. For outlines of methods, and bibliography, see L. S. Ornstein, Proc. Phys. Soc. London,  37, p. 334; 1925.H. B. Dorgelo, Phys. ZS.,  26, p. 756; 1925.G. M. B. Dobson, I. O. Griffith, and D. N. Harrison: Photographic Photometry, Clarendon Press, 1926.
    [CrossRef]
  3. R. de L. Kronig, ZS. f. Phys.,  31, p. 885;ZS. f. Phys. 33, p. 261; 1925. Sommerfeld and Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925.H. N. Russell, Proc. Nat. Acad. Sci.,  11, pp. 314, 322; 1925.
    [CrossRef]
  4. H. C. Burger and H. B. Dorgelo, ZS. f. Phys.,  23, p. 258; 1924.
    [CrossRef]
  5. R. Frerichs, Ann. der Phys.,  81, p. 807; 1926.
    [CrossRef]
  6. J. B. van Milaan, ZS. f. Phys.,  34, p. 921; 1925;ZS. f. Phys. 38, p. 427; 1926.
    [CrossRef]
  7. G. R. Harrison, J.O.S.A. & R.S.I.,  11, pp. 113, 341; 1925.G. R. Harrison and G. S. Forbes, ibid.,  10, p. 1; 1925.
    [CrossRef]
  8. G. R. Harrison, J.O.S.A. & R.S.I.,  16, p. 63; 1928.
    [CrossRef]
  9. G. R. Harrison, J.O.S.A. & R.S.I.,  11, p. 341; 1925.
    [CrossRef]
  10. C. E. Weinland, J.O.S.A. & R.S.I.,  15, p. 337; 1927.
    [CrossRef]
  11. J. B. van Milaan, ZS. f. Phys.,  38, p. 427; 1926.
    [CrossRef]
  12. L. S. Ornstein and H. C. Burger, ZS. f. Phys.,  46, p. 303; 1926.

1928 (1)

G. R. Harrison, J.O.S.A. & R.S.I.,  16, p. 63; 1928.
[CrossRef]

1927 (2)

C. E. Weinland, J.O.S.A. & R.S.I.,  15, p. 337; 1927.
[CrossRef]

H. N. Russell, Astrophysical Journal,  66, pp. 283–328, 347–438; 1927.
[CrossRef]

1926 (3)

R. Frerichs, Ann. der Phys.,  81, p. 807; 1926.
[CrossRef]

J. B. van Milaan, ZS. f. Phys.,  38, p. 427; 1926.
[CrossRef]

L. S. Ornstein and H. C. Burger, ZS. f. Phys.,  46, p. 303; 1926.

1925 (4)

G. R. Harrison, J.O.S.A. & R.S.I.,  11, p. 341; 1925.
[CrossRef]

J. B. van Milaan, ZS. f. Phys.,  34, p. 921; 1925;ZS. f. Phys. 38, p. 427; 1926.
[CrossRef]

G. R. Harrison, J.O.S.A. & R.S.I.,  11, pp. 113, 341; 1925.G. R. Harrison and G. S. Forbes, ibid.,  10, p. 1; 1925.
[CrossRef]

For outlines of methods, and bibliography, see L. S. Ornstein, Proc. Phys. Soc. London,  37, p. 334; 1925.H. B. Dorgelo, Phys. ZS.,  26, p. 756; 1925.G. M. B. Dobson, I. O. Griffith, and D. N. Harrison: Photographic Photometry, Clarendon Press, 1926.
[CrossRef]

1924 (1)

H. C. Burger and H. B. Dorgelo, ZS. f. Phys.,  23, p. 258; 1924.
[CrossRef]

Burger, H. C.

L. S. Ornstein and H. C. Burger, ZS. f. Phys.,  46, p. 303; 1926.

H. C. Burger and H. B. Dorgelo, ZS. f. Phys.,  23, p. 258; 1924.
[CrossRef]

Dorgelo, H. B.

H. C. Burger and H. B. Dorgelo, ZS. f. Phys.,  23, p. 258; 1924.
[CrossRef]

Frerichs, R.

R. Frerichs, Ann. der Phys.,  81, p. 807; 1926.
[CrossRef]

Harrison, G. R.

G. R. Harrison, J.O.S.A. & R.S.I.,  16, p. 63; 1928.
[CrossRef]

G. R. Harrison, J.O.S.A. & R.S.I.,  11, pp. 113, 341; 1925.G. R. Harrison and G. S. Forbes, ibid.,  10, p. 1; 1925.
[CrossRef]

G. R. Harrison, J.O.S.A. & R.S.I.,  11, p. 341; 1925.
[CrossRef]

Kronig, R. de L.

R. de L. Kronig, ZS. f. Phys.,  31, p. 885;ZS. f. Phys. 33, p. 261; 1925. Sommerfeld and Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925.H. N. Russell, Proc. Nat. Acad. Sci.,  11, pp. 314, 322; 1925.
[CrossRef]

Ornstein, L. S.

L. S. Ornstein and H. C. Burger, ZS. f. Phys.,  46, p. 303; 1926.

For outlines of methods, and bibliography, see L. S. Ornstein, Proc. Phys. Soc. London,  37, p. 334; 1925.H. B. Dorgelo, Phys. ZS.,  26, p. 756; 1925.G. M. B. Dobson, I. O. Griffith, and D. N. Harrison: Photographic Photometry, Clarendon Press, 1926.
[CrossRef]

Russell, H. N.

H. N. Russell, Astrophysical Journal,  66, pp. 283–328, 347–438; 1927.
[CrossRef]

van Milaan, J. B.

J. B. van Milaan, ZS. f. Phys.,  38, p. 427; 1926.
[CrossRef]

J. B. van Milaan, ZS. f. Phys.,  34, p. 921; 1925;ZS. f. Phys. 38, p. 427; 1926.
[CrossRef]

Weinland, C. E.

C. E. Weinland, J.O.S.A. & R.S.I.,  15, p. 337; 1927.
[CrossRef]

Ann. der Phys. (1)

R. Frerichs, Ann. der Phys.,  81, p. 807; 1926.
[CrossRef]

Astrophysical Journal (1)

H. N. Russell, Astrophysical Journal,  66, pp. 283–328, 347–438; 1927.
[CrossRef]

J.O.S.A. & R.S.I. (4)

G. R. Harrison, J.O.S.A. & R.S.I.,  11, pp. 113, 341; 1925.G. R. Harrison and G. S. Forbes, ibid.,  10, p. 1; 1925.
[CrossRef]

G. R. Harrison, J.O.S.A. & R.S.I.,  16, p. 63; 1928.
[CrossRef]

G. R. Harrison, J.O.S.A. & R.S.I.,  11, p. 341; 1925.
[CrossRef]

C. E. Weinland, J.O.S.A. & R.S.I.,  15, p. 337; 1927.
[CrossRef]

Proc. Phys. Soc. London (1)

For outlines of methods, and bibliography, see L. S. Ornstein, Proc. Phys. Soc. London,  37, p. 334; 1925.H. B. Dorgelo, Phys. ZS.,  26, p. 756; 1925.G. M. B. Dobson, I. O. Griffith, and D. N. Harrison: Photographic Photometry, Clarendon Press, 1926.
[CrossRef]

ZS. f. Phys. (5)

R. de L. Kronig, ZS. f. Phys.,  31, p. 885;ZS. f. Phys. 33, p. 261; 1925. Sommerfeld and Hönl, Sitz. Preuss. Akad. Wiss.,  9, p. 141; 1925.H. N. Russell, Proc. Nat. Acad. Sci.,  11, pp. 314, 322; 1925.
[CrossRef]

H. C. Burger and H. B. Dorgelo, ZS. f. Phys.,  23, p. 258; 1924.
[CrossRef]

J. B. van Milaan, ZS. f. Phys.,  38, p. 427; 1926.
[CrossRef]

L. S. Ornstein and H. C. Burger, ZS. f. Phys.,  46, p. 303; 1926.

J. B. van Milaan, ZS. f. Phys.,  34, p. 921; 1925;ZS. f. Phys. 38, p. 427; 1926.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

F. 1
F. 1

Portion selected from near the center of a typical plate showing (a) several exposures to multiplet No. 128; (b) calibrations with tungsten lamp and screens; (c) standardizations with tungsten lamp at different temperatures.

F. 2
F. 2

Typical curve showing the variation of sensitivity (J/I) of the photometric system used, for unit plate density. The maximum sensitivity occurs in the violet, where the photographic plate (Eastman 36) is most sensitive. The rapid decrease of sensitivity in the ultraviolet is due largely to falling off of brightness of the grating, while that in the visible is mainly due to decreasing plate sensitivity. The shape of the curve in any particular case is due to a combination of effects of reflection coefficient of grating material, form of riding of grating, astigmatism of mounting, characteristics of focusing lens, emulsion sensitivity, and development, and accordingly at least portions of it must be determined for each set of plates which are to be compared.Transmission coefficient of the spectroradiometer to light of different wave lengths, as determined by means of photo-electric cells.

F. 3
F. 3

The common logarithms of the intensities of the stronger lines of multiplet No. 128, a5F′b5G′ as calculated from the intensity formulas, are plotted against themselves.They are plotted against the logs of the measured intensities (solid curve) when a moderate amount of self-reversal is present. The theoretical self-reversal formula (dotted curve) deviates from this only for the strongest lines.With more self-reversal, the deviation becomes much greater.

Tables (36)

Tables Icon

Table 1 Typical self-reversal data for a5F′b5G′.

Tables Icon

Table 2 Multiplet No. 128 of Ti I. a5F′b5G′.

Tables Icon

Table 3 (128) a5F′b5G′ Class II.

Tables Icon

Table 4 (163) a5P′d5D′ Class III.

Tables Icon

Table 5 (172) a5F′b5F Class II.

Tables Icon

Table 6 (181) a5P′b5P Class III.

Tables Icon

Table 7 (209) a5F′c5D′ Class II.

Tables Icon

Table 8 (237) a5Fa5G Class III.

Tables Icon

Table 9 (36) a4P′a4D′ Class V.

Tables Icon

Table 10 (60) b4F′a4G′ Classes III, IV & V.

Tables Icon

Table 11 (68) a4F′a4G′ Classes II, III & IV.

Tables Icon

Table 12 (74) b4F′a4F Class III.

Tables Icon

Table 13 (79) b4P′b4D′ Classes IIIr, IV & V.

Tables Icon

Table 14 (85) a4F′a4F Class IIIr.

Tables Icon

Tables 15 (96) b4F′a4D′ Classes III & IV.

Tables Icon

Table 16 (106) a4F′a4D′ Classes III & IV.

Tables Icon

Table 17 (70) a3Ga3H Classes II & III.

Tables Icon

Table 18 (72) a3P′b3D′ Classes II & III A.

Tables Icon

Table 19 (112) a3F′a3F Classes I & IA.

Tables Icon

Table 20 (123) b3F′d3G′ Classes II & III.

Tables Icon

Table 21 (126) a3F′a3D′ Class I.

Tables Icon

Table 22 (138) a3Gb3H Classes III & IV.

Tables Icon

Table 23 (141) a3H′a3I′ Classes III & IV.

Tables Icon

Table 24 (148) c3P′h3D′ Class III.

Tables Icon

Table 25 (153) a3H′c3H Class III.

Tables Icon

Table 26 (157) a3F′a3G′ Class I.

Tables Icon

Table 27 (233) a3P′c3P Class III.

Tables Icon

Table 28 (239) a3F′b3F Class II.

Tables Icon

Table 29 (246) a3F′b3D′ Class II.

Tables Icon

Table 30 (271) a3F′c3F Class I.

Tables Icon

Table 31 (276) a3P′b3S′ Class III.

Tables Icon

Table 32 (284) a3F′b3G′ Class I.

Tables Icon

Table 33 (319) a3F′d3D′ Class II.

Tables Icon

Table 34 (320) a3F′c3G′ Class I.

Tables Icon

Table 35 (347) a3F′d3G′ Class I.

Tables Icon

Table 36 (382) a3F′e3F Class II.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

log J = 26 5 log λ antilog ( 7.7939 log λ log T ) .