Abstract

Internal pressure was measured in two special quartz mercury arcs developed in previous investigations. Numerous curves present the data. Pressure is a function of cross-section, voltage gradient, and current only, and independent of arc length and the mode of cooling. Above two atmospheres pressure increases about 140 mm for unit change in voltage gradient, irrespective of other variables. In the constricted arc, 2 mm in diameter, where the cooler absorbing vapor shell is very thin, intensity at given current strength is quite closely proportional to pressure from a few millimeters up to five atmospheres.

With the addition of thermocouple inlets at the mercury surfaces and calibrated measuring tubes, mercury transfer for equal electrode temperatures was measured in the 9 mm arc. The relations are little changed when the cathode is at least 20° to 40° hotter than the anode. Apparently zero at the lowest pressures and voltage gradients, it rises to five gram atoms per faraday from anode to cathode at 5 volts/cm and remains nearly constant up to 25 volts/cm. Current strength is of secondary importance. These conclusions are amply demonstrated by curves. The relative importance of the electron current and the positive ion current under the various conditions studied is briefly discussed.

© 1926 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Harrison and Forbes, This Journal 10, p. 1; 1925.
  2. Forbes and Harrison, Ibid. 10, p. 99; 1925.
  3. Forbes and Harrison, J.A.C.S. 47, p. 2449; 1925.
    [Crossref]
  4. Küch and Retchinsky, Ann. der Physik,  20, p. 563; 1906.
    [Crossref]
  5. Perot, J. Phys. (5)  1, p. 609; 1911.
  6. Günther-Schulze, Z. Physik. 11, p. 260; 1922.
    [Crossref]
  7. Langmuir, J. Franklin Inst.,  106, p. 751; 1923.See also Langmuir and Mott-Smith, Gen. Elec. Rev.,  27, p. 449, 538, 616, 762, 810; 1924.
    [Crossref]
  8. Hamburger, Proc. Acad. Sci. Amsterdam,  25, p. 1045; 1917. Skaupy, Verh. Deut. Phys. Ges.,  19, p. 264; 1917. Rüttenauer, Z. Physik,  2, p. 213; 1922.
  9. Pflüger, Ann. der Physik,  26, p. 789; 1908.
    [Crossref]
  10. Wehnelt and Franck, Verh. Deut. Phys. Ges. 12, p. 444; 1910.
  11. Matthies, Ann. der Phys.,  37, p. 721; 1912.
    [Crossref]
  12. Günther-Schulze, Z. Physik,  11, p. 75; 1922.Z. Physik 31, p. 509; 1925.
    [Crossref]
  13. Schottky and Issendorf, Z. Physik,  26, p. 85; 1924.
    [Crossref]
  14. Arons, Ann. der Physik,  58, p. 73; 1896.
    [Crossref]
  15. Koernicke, Z. Physik,  33, p. 219; 1925, with summary of previous work.
    [Crossref]
  16. Harrison, Phys. Rev. 24, p. 466; 1924.
    [Crossref]
  17. Tate, Phys. Rev.,  23, p. 293; 1924.

1925 (4)

Harrison and Forbes, This Journal 10, p. 1; 1925.

Forbes and Harrison, Ibid. 10, p. 99; 1925.

Forbes and Harrison, J.A.C.S. 47, p. 2449; 1925.
[Crossref]

Koernicke, Z. Physik,  33, p. 219; 1925, with summary of previous work.
[Crossref]

1924 (3)

Harrison, Phys. Rev. 24, p. 466; 1924.
[Crossref]

Tate, Phys. Rev.,  23, p. 293; 1924.

Schottky and Issendorf, Z. Physik,  26, p. 85; 1924.
[Crossref]

1923 (1)

Langmuir, J. Franklin Inst.,  106, p. 751; 1923.See also Langmuir and Mott-Smith, Gen. Elec. Rev.,  27, p. 449, 538, 616, 762, 810; 1924.
[Crossref]

1922 (2)

Günther-Schulze, Z. Physik. 11, p. 260; 1922.
[Crossref]

Günther-Schulze, Z. Physik,  11, p. 75; 1922.Z. Physik 31, p. 509; 1925.
[Crossref]

1917 (1)

Hamburger, Proc. Acad. Sci. Amsterdam,  25, p. 1045; 1917. Skaupy, Verh. Deut. Phys. Ges.,  19, p. 264; 1917. Rüttenauer, Z. Physik,  2, p. 213; 1922.

1912 (1)

Matthies, Ann. der Phys.,  37, p. 721; 1912.
[Crossref]

1911 (1)

Perot, J. Phys. (5)  1, p. 609; 1911.

1910 (1)

Wehnelt and Franck, Verh. Deut. Phys. Ges. 12, p. 444; 1910.

1908 (1)

Pflüger, Ann. der Physik,  26, p. 789; 1908.
[Crossref]

1906 (1)

Küch and Retchinsky, Ann. der Physik,  20, p. 563; 1906.
[Crossref]

1896 (1)

Arons, Ann. der Physik,  58, p. 73; 1896.
[Crossref]

Arons,

Arons, Ann. der Physik,  58, p. 73; 1896.
[Crossref]

Forbes,

Forbes and Harrison, J.A.C.S. 47, p. 2449; 1925.
[Crossref]

Harrison and Forbes, This Journal 10, p. 1; 1925.

Forbes and Harrison, Ibid. 10, p. 99; 1925.

Franck,

Wehnelt and Franck, Verh. Deut. Phys. Ges. 12, p. 444; 1910.

Günther-Schulze,

Günther-Schulze, Z. Physik,  11, p. 75; 1922.Z. Physik 31, p. 509; 1925.
[Crossref]

Günther-Schulze, Z. Physik. 11, p. 260; 1922.
[Crossref]

Hamburger,

Hamburger, Proc. Acad. Sci. Amsterdam,  25, p. 1045; 1917. Skaupy, Verh. Deut. Phys. Ges.,  19, p. 264; 1917. Rüttenauer, Z. Physik,  2, p. 213; 1922.

Harrison,

Forbes and Harrison, Ibid. 10, p. 99; 1925.

Harrison and Forbes, This Journal 10, p. 1; 1925.

Forbes and Harrison, J.A.C.S. 47, p. 2449; 1925.
[Crossref]

Harrison, Phys. Rev. 24, p. 466; 1924.
[Crossref]

Issendorf,

Schottky and Issendorf, Z. Physik,  26, p. 85; 1924.
[Crossref]

Koernicke,

Koernicke, Z. Physik,  33, p. 219; 1925, with summary of previous work.
[Crossref]

Küch,

Küch and Retchinsky, Ann. der Physik,  20, p. 563; 1906.
[Crossref]

Langmuir,

Langmuir, J. Franklin Inst.,  106, p. 751; 1923.See also Langmuir and Mott-Smith, Gen. Elec. Rev.,  27, p. 449, 538, 616, 762, 810; 1924.
[Crossref]

Matthies,

Matthies, Ann. der Phys.,  37, p. 721; 1912.
[Crossref]

Perot,

Perot, J. Phys. (5)  1, p. 609; 1911.

Pflüger,

Pflüger, Ann. der Physik,  26, p. 789; 1908.
[Crossref]

Retchinsky,

Küch and Retchinsky, Ann. der Physik,  20, p. 563; 1906.
[Crossref]

Schottky,

Schottky and Issendorf, Z. Physik,  26, p. 85; 1924.
[Crossref]

Tate,

Tate, Phys. Rev.,  23, p. 293; 1924.

Wehnelt,

Wehnelt and Franck, Verh. Deut. Phys. Ges. 12, p. 444; 1910.

Ann. der Phys. (1)

Matthies, Ann. der Phys.,  37, p. 721; 1912.
[Crossref]

Ann. der Physik (3)

Arons, Ann. der Physik,  58, p. 73; 1896.
[Crossref]

Küch and Retchinsky, Ann. der Physik,  20, p. 563; 1906.
[Crossref]

Pflüger, Ann. der Physik,  26, p. 789; 1908.
[Crossref]

Ibid. (1)

Forbes and Harrison, Ibid. 10, p. 99; 1925.

J. Franklin Inst. (1)

Langmuir, J. Franklin Inst.,  106, p. 751; 1923.See also Langmuir and Mott-Smith, Gen. Elec. Rev.,  27, p. 449, 538, 616, 762, 810; 1924.
[Crossref]

J. Phys. (1)

Perot, J. Phys. (5)  1, p. 609; 1911.

J.A.C.S. (1)

Forbes and Harrison, J.A.C.S. 47, p. 2449; 1925.
[Crossref]

Phys. Rev. (2)

Harrison, Phys. Rev. 24, p. 466; 1924.
[Crossref]

Tate, Phys. Rev.,  23, p. 293; 1924.

Proc. Acad. Sci. Amsterdam (1)

Hamburger, Proc. Acad. Sci. Amsterdam,  25, p. 1045; 1917. Skaupy, Verh. Deut. Phys. Ges.,  19, p. 264; 1917. Rüttenauer, Z. Physik,  2, p. 213; 1922.

This Journal (1)

Harrison and Forbes, This Journal 10, p. 1; 1925.

Verh. Deut. Phys. Ges. (1)

Wehnelt and Franck, Verh. Deut. Phys. Ges. 12, p. 444; 1910.

Z. Physik (3)

Koernicke, Z. Physik,  33, p. 219; 1925, with summary of previous work.
[Crossref]

Günther-Schulze, Z. Physik,  11, p. 75; 1922.Z. Physik 31, p. 509; 1925.
[Crossref]

Schottky and Issendorf, Z. Physik,  26, p. 85; 1924.
[Crossref]

Z. Physik. (1)

Günther-Schulze, Z. Physik. 11, p. 260; 1922.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

F. 1
F. 1

Mercury vapor lamp for measurement of pressure and mercury transfer.

F. 2
F. 2

Curves show the relation between pressure and voltage gradient. The upper group is for the 9 mm arc and the lower group for the 2 mm arc. The current strengths are given.

F. 3
F. 3

Shows pressure at a fixed current strength (2 amperes) as a function of voltage gradient only. Circles, 15 cm arc length, cathode hotter; squares, 37 cm arc, cathode hotter; triangles, 37 cm arc length, equal temperatures; crosses, 15 cm arc length, anode hotter; dots, miscellaneous combinations. All data are for the 9 mm arc.

F. 4
F. 4

Curves show linear relation between galvanometer deflections and pressure for single lines at fixed current strength. Dots, 2 mm arc, 1.00 ampere; crosses, 8 mm arc, 2.00 amperes; circles, 2 mm arc, 0.33 ampere.

F. 5 and F. 6
F. 5 and F. 6

show variations in gram atoms transferred from anode to cathode perfaraday tor various distances between the respective electrodes and the water in the jackets

F. 7
F. 7

Shows relation between mercury transfer and current strength. Full lines, equal coolingt cathode somewhat hotter; dash lines, equal electrode temperatures; dot-dash line, hotter anode.

Tables (4)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Gram atoms of mercury per centimeter of cathode capillary 0.00850 0.079 ÷ 1545 96500 = 4.93 transferred 0.079 per centimeter of anode 0.00673 0.082 ÷ 1545 96500 = 5.12 transferred 0.082 5.02