Abstract

Presented is a fuzzy-logic-based scheduling algorithm for passive optical networks (PONs) that considers four different metrics to allocate an upstream bandwidth to optical network units (ONUs). The metrics considered are the delay of the head-of-the-line packets at the ONUs, the importance level of the packets, the relative ONU's buffer fullness, and the level of the power fluctuation from one ONU to another. One of the advantages of a fuzzy controller is the fact that, regardless of the design complexity, the controller can be implemented as a simple look-up table, which makes it ideal for high-speed operation. Further facilitation of implementation was achieved by realization of the fuzzy algorithm through a two-stage hierarchal architecture. Moreover, linear predictive filters have been used to predict the traffic arrival rate and the packet delay at the ONUs. Compared with the round-robin scheduling algorithm, the results show significant performance improvement in terms of the overall packets delay as well as jitter when the proposed algorithm in employed. Furthermore, using this algorithm would reduce the average level of power fluctuations in a PON system and will also provide high-level service differentiation between packets of different importance.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Farmer and K. Bourg, “Practical deployment of passive optical networks,” IEEE Commun. Mag. 46(7), 136-145 (2008).
  2. A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks,” in 3rd IEEE Consumer Communications and Networking Conference (IEEE, 2006), pp. 30-34.
  3. P. Ossieur, X. Z. Qiu, J. Bauwelinck, and J. Vandewege, “Sensitivity penalty calculation for burst-mode receivers using avalanche photodiodes,” J. Lightwave Technol. 21, 2565-2575 (2003).
    [Crossref]
  4. E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man-Mach. Stud. 7, 1-13 (1975).
    [Crossref]
  5. O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
    [Crossref]
  6. A. M. Adas, “Using adaptive linear prediction to support real-time VBR video under RCBR network service model,” IEEE/ACM Trans. Netw. 6, 635-644 (1998).
    [Crossref]
  7. G. Bianchi, “Predictive dynamic bandwidth allocation based on multifractal traffic characteristic for service assurance with partial and intermittent results,” Lect. Notes Comput. Sci. 3126, 21-30 (2004).
  8. Y. Luo and N. Ansari, “Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over EPONs,” J. Opt. Netw. 4, 561-572 (2005).
    [Crossref]
  9. B. Lannoo, L. Verslegers, D. Colle, M. Pickave, M. Gagnaire, and P. Demeester, “Analytical model for the IPACT dynamic bandwidth allocation algorithm for EPONs,” J. Opt. Netw. 6, 677-688 (2007).
    [Crossref]
  10. C.-S. Li, M.-S. Chen, and F. F.-K. Tong, “POPSMAC: a medium access protocol for packet-switched passive optical networks using WDMA,” J. Lightwave Technol. 11, 1066-1077 (1993).
  11. A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in ethernet passive optical networks,” J. Lightwave Technol. 23, 1745-1753 (2005).
    [Crossref]

2008 (1)

J. Farmer and K. Bourg, “Practical deployment of passive optical networks,” IEEE Commun. Mag. 46(7), 136-145 (2008).

2007 (1)

2006 (1)

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

2005 (2)

2004 (1)

G. Bianchi, “Predictive dynamic bandwidth allocation based on multifractal traffic characteristic for service assurance with partial and intermittent results,” Lect. Notes Comput. Sci. 3126, 21-30 (2004).

2003 (1)

1998 (1)

A. M. Adas, “Using adaptive linear prediction to support real-time VBR video under RCBR network service model,” IEEE/ACM Trans. Netw. 6, 635-644 (1998).
[Crossref]

1993 (1)

C.-S. Li, M.-S. Chen, and F. F.-K. Tong, “POPSMAC: a medium access protocol for packet-switched passive optical networks using WDMA,” J. Lightwave Technol. 11, 1066-1077 (1993).

1975 (1)

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man-Mach. Stud. 7, 1-13 (1975).
[Crossref]

Adas, A. M.

A. M. Adas, “Using adaptive linear prediction to support real-time VBR video under RCBR network service model,” IEEE/ACM Trans. Netw. 6, 635-644 (1998).
[Crossref]

Ansari, N.

Assi, C.

Assi, C. M.

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks,” in 3rd IEEE Consumer Communications and Networking Conference (IEEE, 2006), pp. 30-34.

Assilian, S.

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man-Mach. Stud. 7, 1-13 (1975).
[Crossref]

Ayala, A.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

Bai, X.

Bauwelinck, J.

Bianchi, G.

G. Bianchi, “Predictive dynamic bandwidth allocation based on multifractal traffic characteristic for service assurance with partial and intermittent results,” Lect. Notes Comput. Sci. 3126, 21-30 (2004).

Bourg, K.

J. Farmer and K. Bourg, “Practical deployment of passive optical networks,” IEEE Commun. Mag. 46(7), 136-145 (2008).

Chen, M.-S.

C.-S. Li, M.-S. Chen, and F. F.-K. Tong, “POPSMAC: a medium access protocol for packet-switched passive optical networks using WDMA,” J. Lightwave Technol. 11, 1066-1077 (1993).

Colle, D.

Demeester, P.

Dhaini, A. R.

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks,” in 3rd IEEE Consumer Communications and Networking Conference (IEEE, 2006), pp. 30-34.

Farmer, J.

J. Farmer and K. Bourg, “Practical deployment of passive optical networks,” IEEE Commun. Mag. 46(7), 136-145 (2008).

Gagnaire, M.

Ghani, N.

González, O.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

Lannoo, B.

Li, C.-S.

C.-S. Li, M.-S. Chen, and F. F.-K. Tong, “POPSMAC: a medium access protocol for packet-switched passive optical networks using WDMA,” J. Lightwave Technol. 11, 1066-1077 (1993).

Luo, Y.

Mamdani, E. H.

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man-Mach. Stud. 7, 1-13 (1975).
[Crossref]

Ossieur, P.

Pérez-Jiménez, R.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

Pickave, M.

Qiu, X. Z.

Rabadán, J.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

Rodríguez, S.

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

Shami, A.

A. Shami, X. Bai, C. Assi, and N. Ghani, “Jitter performance in ethernet passive optical networks,” J. Lightwave Technol. 23, 1745-1753 (2005).
[Crossref]

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks,” in 3rd IEEE Consumer Communications and Networking Conference (IEEE, 2006), pp. 30-34.

Tong, F. F.-K.

C.-S. Li, M.-S. Chen, and F. F.-K. Tong, “POPSMAC: a medium access protocol for packet-switched passive optical networks using WDMA,” J. Lightwave Technol. 11, 1066-1077 (1993).

Vandewege, J.

Verslegers, L.

IEE Proc.: Optoelectron. (1)

O. González, R. Pérez-Jiménez, S. Rodríguez, J. Rabadán, and A. Ayala, “Adaptive OFDM system for communications over the indoor wireless optical channel,” IEE Proc.: Optoelectron. 153, 139-144 (2006).
[Crossref]

IEEE Commun. Mag. (1)

J. Farmer and K. Bourg, “Practical deployment of passive optical networks,” IEEE Commun. Mag. 46(7), 136-145 (2008).

IEEE/ACM Trans. Netw. (1)

A. M. Adas, “Using adaptive linear prediction to support real-time VBR video under RCBR network service model,” IEEE/ACM Trans. Netw. 6, 635-644 (1998).
[Crossref]

Int. J. Man-Mach. Stud. (1)

E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic controller,” Int. J. Man-Mach. Stud. 7, 1-13 (1975).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Netw. (2)

Lect. Notes Comput. Sci. (1)

G. Bianchi, “Predictive dynamic bandwidth allocation based on multifractal traffic characteristic for service assurance with partial and intermittent results,” Lect. Notes Comput. Sci. 3126, 21-30 (2004).

Other (1)

A. R. Dhaini, C. M. Assi, and A. Shami, “Dynamic bandwidth allocation schemes in hybrid TDM/WDM passive optical networks,” in 3rd IEEE Consumer Communications and Networking Conference (IEEE, 2006), pp. 30-34.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.