Abstract

Spectral and waveform reshaping schemes can enhance the transmission distance of fiber links that use directly modulated lasers as transmitters. We prove the feasibility of using a simple Fabry-Perot (FP) etalon as the spectral reshaper for applications in wavelength division multiplexing (WDM) access networks. The transient chirp and adiabatic chirp of a directly modulated laser are analyzed in detail by using the time-resolved chirp measurement. The effects of the original extinction ratio and the adiabatic chirp on the spectral reshaping are clarified to obtain the optimal operation conditions. It is shown that placing a single-cavity FP etalon filter after multiple 10 Gbits/s directly modulated lasers can extend their transmission distances from <10to>50 km in the 1.55 μm wavelength window. Due to the limited filtering capability of the etalon, the choice of the original extinction ratio and finesse of the etalon is discussed in detail from the experiments and simulation.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).
  2. P. K. Lau and T. Makino, “Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems,” J. Lightwave Technol. 15, 1663-1668 (1997).
    [Crossref]
  3. I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
    [Crossref]
  4. H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
    [Crossref]
  5. K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.
  6. L. Illing and M. B. Kennel, “Shaping current waveforms for direct modulation of semiconductor lasers,” IEEE J. Quantum Electron. 40, 445-452 (2004).
    [Crossref]
  7. M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
    [Crossref]
  8. B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard singlemode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12, 1720-1727 (1994).
    [Crossref]
  9. Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
    [Crossref]
  10. P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
    [Crossref]
  11. T. Niemi, M. Uusimaa, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58-60 (2001).
    [Crossref]
  12. H. Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J. Lightwave Technol. 17, 898-903 (1999).
    [Crossref]
  13. J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10 Gbps directly modulated laser with demultiplexer filtering,” in The 17th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS 2004) (IEEE, 2004), pp. 784-785, paper ThE4.
  14. L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express 13, 5106-5115 (2005).
    [Crossref]
  15. C. S. Wong, and H. K. Tsang, “Improvement of directly modulated diode-laser pulse using an optical delay interferometer,” IEEE Photon. Technol. Lett. 16, 632-634 (2004).
    [Crossref]
  16. C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett. 17, 693-695 (2005).
    [Crossref]
  17. C. L. Yang, S. L. Lee, and J. Wu, “Optical isolator based modules for monitoring DWDM tunable lasers,” J. Opt. Netw. 3, 452-463 (2004).
  18. Agilent Technologies, “Making time-resolved chirp measurements using the optical spectrum analyzer and digital communications analyzer,” Application note 1550-7.
  19. T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613-615 (1986).
    [Crossref]
  20. P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Optoelectron. Rev. 14, 123-128 (2006).
  21. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), pp. 213-215.
  22. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 316-318.
  23. M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
    [Crossref]
  24. L. J. Cimini and L. J. Greenstein “Optical equalization to combat the effects of laser chirp and fiber dispersion,” J. Lightwave Technol. 8, 649-659 (1990).
    [Crossref]
  25. VPIphotonics, http://www.vpiphotonics.com/index.html.
  26. S. C. Lin, S. L. Lee and C. K. Liu, “Simple approach for bidirectional performance enhancement on WDM-PONs with direct-modulation lasers and RSOAs,” Opt. Express 16, 3636-3643 (2008).

2008 (1)

2006 (2)

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Optoelectron. Rev. 14, 123-128 (2006).

2005 (2)

C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett. 17, 693-695 (2005).
[Crossref]

L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express 13, 5106-5115 (2005).
[Crossref]

2004 (4)

C. S. Wong, and H. K. Tsang, “Improvement of directly modulated diode-laser pulse using an optical delay interferometer,” IEEE Photon. Technol. Lett. 16, 632-634 (2004).
[Crossref]

C. L. Yang, S. L. Lee, and J. Wu, “Optical isolator based modules for monitoring DWDM tunable lasers,” J. Opt. Netw. 3, 452-463 (2004).

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

L. Illing and M. B. Kennel, “Shaping current waveforms for direct modulation of semiconductor lasers,” IEEE J. Quantum Electron. 40, 445-452 (2004).
[Crossref]

2003 (2)

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
[Crossref]

2001 (2)

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58-60 (2001).
[Crossref]

1999 (1)

1997 (2)

P. K. Lau and T. Makino, “Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems,” J. Lightwave Technol. 15, 1663-1668 (1997).
[Crossref]

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

1994 (1)

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard singlemode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12, 1720-1727 (1994).
[Crossref]

1990 (1)

L. J. Cimini and L. J. Greenstein “Optical equalization to combat the effects of laser chirp and fiber dispersion,” J. Lightwave Technol. 8, 649-659 (1990).
[Crossref]

1987 (1)

S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).

1986 (1)

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613-615 (1986).
[Crossref]

Boroditsky, M.

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

Boskovic, A.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Cho, P. S.

Chow, C. W.

C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett. 17, 693-695 (2005).
[Crossref]

Chung, H. S.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
[Crossref]

Chung, Y. C.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
[Crossref]

Cimini, L. J.

L. J. Cimini and L. J. Greenstein “Optical equalization to combat the effects of laser chirp and fiber dispersion,” J. Lightwave Technol. 8, 649-659 (1990).
[Crossref]

Coldren, L. A.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), pp. 213-215.

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), pp. 213-215.

Coskun, O.

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

Downie, J. D.

J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10 Gbps directly modulated laser with demultiplexer filtering,” in The 17th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS 2004) (IEEE, 2004), pp. 784-785, paper ThE4.

Fan, Z. F.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

Feuer, M. D.

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

Franz, B.

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard singlemode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12, 1720-1727 (1994).
[Crossref]

Funabashi, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Goldhar, J.

Greenstein, L. J.

L. J. Cimini and L. J. Greenstein “Optical equalization to combat the effects of laser chirp and fiber dispersion,” J. Lightwave Technol. 8, 649-659 (1990).
[Crossref]

Hallock, B.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Hesse, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Hirano, A.

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.

Huang, S. Y.

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

Illing, L.

L. Illing and M. B. Kennel, “Shaping current waveforms for direct modulation of semiconductor lasers,” IEEE J. Quantum Electron. 40, 445-452 (2004).
[Crossref]

Iwamoto, Y.

S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).

Jang, Y. G.

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
[Crossref]

Junginger, B.

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard singlemode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12, 1720-1727 (1994).
[Crossref]

Kasukawa, A.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Kennel, M. B.

L. Illing and M. B. Kennel, “Shaping current waveforms for direct modulation of semiconductor lasers,” IEEE J. Quantum Electron. 40, 445-452 (2004).
[Crossref]

Kimoto, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Kise, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Koch, T. L.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613-615 (1986).
[Crossref]

Krehlik, P.

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Optoelectron. Rev. 14, 123-128 (2006).

Kuwahara, S.

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.

Kuwazuru, M.

S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).

Lau, P. K.

P. K. Lau and T. Makino, “Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems,” J. Lightwave Technol. 15, 1663-1668 (1997).
[Crossref]

Lee, S. L.

Liao, C.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

Lin, S. C.

Linke, R. A.

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613-615 (1986).
[Crossref]

Liu, C. K.

Ludvigsen, H.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58-60 (2001).
[Crossref]

Mahgerefteh, D.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

H. Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J. Lightwave Technol. 17, 898-903 (1999).
[Crossref]

Makino, T.

P. K. Lau and T. Makino, “Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems,” J. Lightwave Technol. 15, 1663-1668 (1997).
[Crossref]

Matsui, Y.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

McCallion, K.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

McGeehan, J.

Miyamoto, Y.

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.

Morgan, R. A.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

Morton, P. A.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

Mukaihara, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Nakano, J.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Nasu, H.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Niemi, T.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58-60 (2001).
[Crossref]

Nomura, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Oike, M.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Paraschis, L.

Roudas, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 316-318.

Shinagawa, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Shtengel, G. E.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

Soto, K.

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.

Takagi, T.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Takaki, K.

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

Tanbun-Ek, T.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

Tayebati, P.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 316-318.

Tomkos, I.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Tsang, H. K.

C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett. 17, 693-695 (2005).
[Crossref]

C. S. Wong, and H. K. Tsang, “Improvement of directly modulated diode-laser pulse using an optical delay interferometer,” IEEE Photon. Technol. Lett. 16, 632-634 (2004).
[Crossref]

Tzeng, L. D.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

Uusimaa, M.

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58-60 (2001).
[Crossref]

Vodhanel, R.

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

Vodhanel, R. S.

J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10 Gbps directly modulated laser with demultiplexer filtering,” in The 17th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS 2004) (IEEE, 2004), pp. 784-785, paper ThE4.

Wakabayashi, M. H.

S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).

Wang, Y.

Wedding, B.

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard singlemode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12, 1720-1727 (1994).
[Crossref]

Willner, A. E.

Wong, C. S.

C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett. 17, 693-695 (2005).
[Crossref]

C. S. Wong, and H. K. Tsang, “Improvement of directly modulated diode-laser pulse using an optical delay interferometer,” IEEE Photon. Technol. Lett. 16, 632-634 (2004).
[Crossref]

Woodward, S. L.

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

Wu, J.

Yadvish, R. D.

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

Yamamoto, S.

S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).

Yan, L. S.

Yang, C. L.

Yoneyama, M.

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.

Yu, C.

Yu, H. Y.

Zhang, B.

Zheng, X.

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

Appl. Phys. Lett. (1)

T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613-615 (1986).
[Crossref]

Electron. Lett. (1)

P. A. Morton, G. E. Shtengel, L. D. Tzeng, R. D. Yadvish, T. Tanbun-Ek, and R. A. Morgan, “38.5 km error free transmission at 10 Gbit/s in standard fiber using a low chirp, spectrally filtered, directly modulated 1.55 μm DFB laser,” Electron. Lett. 33, 310-311 (1997).
[Crossref]

IEEE J. Quantum Electron. (1)

L. Illing and M. B. Kennel, “Shaping current waveforms for direct modulation of semiconductor lasers,” IEEE J. Quantum Electron. 40, 445-452 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Funabashi, H. Nasu, T. Mukaihara, T. Kimoto, T. Shinagawa, T. Kise, K. Takaki, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa, “Recent advances in DFB lasers for ultradense WDM applications,” IEEE J. Sel. Top. Quantum Electron. 10, 312-320 (2004).
[Crossref]

IEEE Photon. Technol. Lett. (7)

M. D. Feuer, S. Y. Huang, S. L. Woodward, O. Coskun, and M. Boroditsky, “Electronic dispersion compensation for a 10-Gb/s link using a directly modulated laser,” IEEE Photon. Technol. Lett. 15, 1788-1790 (2003).
[Crossref]

Y. Matsui, D. Mahgerefteh, X. Zheng, C. Liao, Z. F. Fan, K. McCallion, and P. Tayebati, “Chirp-managed directly modulated laser (CML),” IEEE Photon. Technol. Lett. 18, 385-387 (2006).
[Crossref]

C. S. Wong, and H. K. Tsang, “Improvement of directly modulated diode-laser pulse using an optical delay interferometer,” IEEE Photon. Technol. Lett. 16, 632-634 (2004).
[Crossref]

C. W. Chow, C. S. Wong, and H. K. Tsang, “Reduction of amplitude transients and BER of direct modulation laser using birefringent fiber loop,” IEEE Photon. Technol. Lett. 17, 693-695 (2005).
[Crossref]

T. Niemi, M. Uusimaa, and H. Ludvigsen, “Tunable silicon etalon for simultaneous spectral filtering and wavelength monitoring of a DWDM transmitter,” IEEE Photon. Technol. Lett. 13, 58-60 (2001).
[Crossref]

I. Tomkos, B. Hallock, I. Roudas, R. Hesse, A. Boskovic, J. Nakano, and R. Vodhanel, “10-Gb/s transmission of 1550 nm directly modulated signal over 100 km of negative dispersion fiber,” IEEE Photon. Technol. Lett. 13, 735-737 (2001).
[Crossref]

H. S. Chung, Y. G. Jang, and Y. C. Chung, “Directly modulated 10-Gb/s signal transmission over 320 km of negative dispersion fiber for regional metro network,” IEEE Photon. Technol. Lett. 15, 1306-1308 (2003).
[Crossref]

J. Lightwave Technol. (5)

S. Yamamoto, M. Kuwazuru, M. H. Wakabayashi, and Y. Iwamoto, “Analysis of chirp power penalty in 1.55-μm DFB-LD high-speed optical fiber transmission systems,” J. Lightwave Technol. 5, 1518-1524 (1987).

P. K. Lau and T. Makino, “Effects of laser diode parameters on power penalty in 10 Gb/s optical fiber transmission systems,” J. Lightwave Technol. 15, 1663-1668 (1997).
[Crossref]

H. Y. Yu, D. Mahgerefteh, P. S. Cho, and J. Goldhar, “Improved transmission of chirped signals from semiconductor optical devices by pulse reshaping using a fiber Bragg grating filter,” J. Lightwave Technol. 17, 898-903 (1999).
[Crossref]

B. Wedding, B. Franz, and B. Junginger, “10-Gb/s optical transmission up to 253 km via standard singlemode fiber using the method of dispersion-supported transmission,” J. Lightwave Technol. 12, 1720-1727 (1994).
[Crossref]

L. J. Cimini and L. J. Greenstein “Optical equalization to combat the effects of laser chirp and fiber dispersion,” J. Lightwave Technol. 8, 649-659 (1990).
[Crossref]

J. Opt. Netw. (1)

Opt. Express (2)

Optoelectron. Rev. (1)

P. Krehlik, “Characterization of semiconductor laser frequency chirp based on signal distortion in dispersive optical fiber,” Optoelectron. Rev. 14, 123-128 (2006).

Other (6)

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), pp. 213-215.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 1991), pp. 316-318.

VPIphotonics, http://www.vpiphotonics.com/index.html.

Agilent Technologies, “Making time-resolved chirp measurements using the optical spectrum analyzer and digital communications analyzer,” Application note 1550-7.

J. D. Downie and R. S. Vodhanel, “Reach enhancement of a 10 Gbps directly modulated laser with demultiplexer filtering,” in The 17th Annual Meeting of the IEEE Lasers and Electro-optics Society (LEOS 2004) (IEEE, 2004), pp. 784-785, paper ThE4.

K. Soto, S. Kuwahara, A. Hirano, M. Yoneyama, and Y. Miyamoto, “4×40 Gbit/s dense WDM transmission over 40-km SMF using directly modulated DFB lasers,” in Proceedings of ECOC (2004), paper We1.5.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.