Abstract

The main challenge for present and future personal communication systems and personal communication networks stems from the exponentially growing user demand. Radio over fiber (RoF), the combination of optical and wireless technologies, has many advantages and a wide range of applications. The 3G wireless communication technology uses wideband code division multiple access (WCDMA) standards to support the broadband services, and RoF technology will be an appropriate candidate in such environments. This paper presents what is believed to be a novel double-spreading mechanism, both in the wireless and optical domains for the cascaded RoF systems. Although a star configuration is the most popular because of its easy maintenance, the cascade or bus configuration can reduce the fiber counts and is hence cost-effective. Simulation studies on bit-error-rate performance for different numbers of users using orthogonal variable spread factor (OVSF) codes in the wireless domain and Walsh-Hadamard codes for optical code division multiple access (OCDMA) in the optical domain have been carried out. Hence, in view of less system complexity and cost, the proposed double-spreading technique would be an ideal solution for WCDMA-based wireless systems and the upcoming 4G with backbone cascaded RoF networks.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. I. Way, “Optical fiber based microcellular systems: an overview,” IEICE Trans. Commun. E76-B, 1091-1101 (1993).
  2. J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. Veh. Technol. 47, 84-94 (1998).
    [CrossRef]
  3. H. Al-Raweshidy and S. Komaki, Radio over Fiber Technologies for Mobile Communication Networks (Artech House, 2002).
  4. A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26, 2054-2056 (1990).
  5. M. Haardt, W. Mohr, and A. G. Siemens, “The complete solution for third-generation wireless communications: two modes on air, one winning strategy,” IEEE Pers. Commun. 7, 18-24 (2000).
  6. K. Tachikawa, “A perspective on the evolution of mobile communications,” IEEE Commun. Mag. 41(10), 66-73 (2003).
    [CrossRef]
  7. P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).
  8. A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).
  9. R. Sabella, “Performance analysis of wireless broadband system employing optical fiber links,” IEEE Trans. Commun. 47, 715-721 (1999).
  10. M. Fujise, “Radio over fiber transmission technology for ITS and mobile communications,” IEICE Trans. Fundamentals E84-A, 1808-1814 (2001).
  11. A. Kim, Y. H. Joo, and Y. S. Kim, “60 GHz wireless communication system with radio-over-fiber links for indoor wireless LANS,” IEEE Trans. Consum. Electron. 50, 517-520 (2004).
  12. 3GPP Standards, http://www.3gpp.org.
  13. J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001).
  14. S. Iezekeil, C. M. Snowden, and M. J. Howes, “Modelling of laser diodes under direct microwave intensity modulation,” in IEE Colloquim on Optical Control and Generation of Microwave and Millimeter-Wave Signals (IEE, 1989), pp. 1-8.
  15. G. P. Agarwal, Fiber Optic Communication Systems (Wiley Interscience, 2002).
  16. B. J. Koshy and P. M. Shankar, “Spread-spectrum techniques for fiber-fed micro cellular networks,” IEEE Trans. Veh. Technol. 48, 847-857 (1999).
  17. S. Kajiya, K. Tsukamaoto, and S. Komaki, “Proposal of fiber-optic radio high way networks using CDMA method,” IEICE Trans. Electron. E79-C, 496-500 (1996).
  18. K. Kitayama, H. Sotobayashi, and N. Wada, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626 (1999).
  19. B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
    [CrossRef]
  20. D. Wake and R. E. Schuh, “Mesaurement and simulation of W-CDMA signal transmission over optical fibre,” Electron. Lett. 36, 901-902 (2000).
    [CrossRef]
  21. P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.
  22. C. L. Wing, M. S. Alouini, and M. K. Simon, “Optimum spreading bandwidth for selective RAKE reception over Rayleigh fading channels,” IEEE J. Sel. Areas Commun. 19, 1080-1089 (2001).

2004 (2)

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).

A. Kim, Y. H. Joo, and Y. S. Kim, “60 GHz wireless communication system with radio-over-fiber links for indoor wireless LANS,” IEEE Trans. Consum. Electron. 50, 517-520 (2004).

2003 (3)

B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
[CrossRef]

A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).

K. Tachikawa, “A perspective on the evolution of mobile communications,” IEEE Commun. Mag. 41(10), 66-73 (2003).
[CrossRef]

2001 (2)

M. Fujise, “Radio over fiber transmission technology for ITS and mobile communications,” IEICE Trans. Fundamentals E84-A, 1808-1814 (2001).

C. L. Wing, M. S. Alouini, and M. K. Simon, “Optimum spreading bandwidth for selective RAKE reception over Rayleigh fading channels,” IEEE J. Sel. Areas Commun. 19, 1080-1089 (2001).

2000 (2)

D. Wake and R. E. Schuh, “Mesaurement and simulation of W-CDMA signal transmission over optical fibre,” Electron. Lett. 36, 901-902 (2000).
[CrossRef]

M. Haardt, W. Mohr, and A. G. Siemens, “The complete solution for third-generation wireless communications: two modes on air, one winning strategy,” IEEE Pers. Commun. 7, 18-24 (2000).

1999 (3)

R. Sabella, “Performance analysis of wireless broadband system employing optical fiber links,” IEEE Trans. Commun. 47, 715-721 (1999).

B. J. Koshy and P. M. Shankar, “Spread-spectrum techniques for fiber-fed micro cellular networks,” IEEE Trans. Veh. Technol. 48, 847-857 (1999).

K. Kitayama, H. Sotobayashi, and N. Wada, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626 (1999).

1998 (1)

J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. Veh. Technol. 47, 84-94 (1998).
[CrossRef]

1996 (1)

S. Kajiya, K. Tsukamaoto, and S. Komaki, “Proposal of fiber-optic radio high way networks using CDMA method,” IEICE Trans. Electron. E79-C, 496-500 (1996).

1993 (1)

W. I. Way, “Optical fiber based microcellular systems: an overview,” IEICE Trans. Commun. E76-B, 1091-1101 (1993).

1990 (1)

A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26, 2054-2056 (1990).

Agarwal, G. P.

G. P. Agarwal, Fiber Optic Communication Systems (Wiley Interscience, 2002).

Alouini, M. S.

C. L. Wing, M. S. Alouini, and M. K. Simon, “Optimum spreading bandwidth for selective RAKE reception over Rayleigh fading channels,” IEEE J. Sel. Areas Commun. 19, 1080-1089 (2001).

Alphones, A.

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.

Al-Raweshidy, H.

H. Al-Raweshidy and S. Komaki, Radio over Fiber Technologies for Mobile Communication Networks (Artech House, 2002).

Cooper, A. J.

A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26, 2054-2056 (1990).

Fujise, M.

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).

M. Fujise, “Radio over fiber transmission technology for ITS and mobile communications,” IEICE Trans. Fundamentals E84-A, 1808-1814 (2001).

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.

Haardt, M.

M. Haardt, W. Mohr, and A. G. Siemens, “The complete solution for third-generation wireless communications: two modes on air, one winning strategy,” IEEE Pers. Commun. 7, 18-24 (2000).

Howes, M. J.

S. Iezekeil, C. M. Snowden, and M. J. Howes, “Modelling of laser diodes under direct microwave intensity modulation,” in IEE Colloquim on Optical Control and Generation of Microwave and Millimeter-Wave Signals (IEE, 1989), pp. 1-8.

Iezekeil, S.

S. Iezekeil, C. M. Snowden, and M. J. Howes, “Modelling of laser diodes under direct microwave intensity modulation,” in IEE Colloquim on Optical Control and Generation of Microwave and Millimeter-Wave Signals (IEE, 1989), pp. 1-8.

Joo, Y. H.

A. Kim, Y. H. Joo, and Y. S. Kim, “60 GHz wireless communication system with radio-over-fiber links for indoor wireless LANS,” IEEE Trans. Consum. Electron. 50, 517-520 (2004).

Ju, Y. H.

A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).

Kajiya, S.

S. Kajiya, K. Tsukamaoto, and S. Komaki, “Proposal of fiber-optic radio high way networks using CDMA method,” IEICE Trans. Electron. E79-C, 496-500 (1996).

Kim, A.

A. Kim, Y. H. Joo, and Y. S. Kim, “60 GHz wireless communication system with radio-over-fiber links for indoor wireless LANS,” IEEE Trans. Consum. Electron. 50, 517-520 (2004).

A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).

Kim, B. K.

B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
[CrossRef]

Kim, B. W.

B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
[CrossRef]

Kim, Y. S.

A. Kim, Y. H. Joo, and Y. S. Kim, “60 GHz wireless communication system with radio-over-fiber links for indoor wireless LANS,” IEEE Trans. Consum. Electron. 50, 517-520 (2004).

A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).

Kitayama, K.

K. Kitayama, H. Sotobayashi, and N. Wada, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626 (1999).

Komaki, S.

S. Kajiya, K. Tsukamaoto, and S. Komaki, “Proposal of fiber-optic radio high way networks using CDMA method,” IEICE Trans. Electron. E79-C, 496-500 (1996).

H. Al-Raweshidy and S. Komaki, Radio over Fiber Technologies for Mobile Communication Networks (Artech House, 2002).

Koshy, B. J.

B. J. Koshy and P. M. Shankar, “Spread-spectrum techniques for fiber-fed micro cellular networks,” IEEE Trans. Veh. Technol. 48, 847-857 (1999).

Luo, B.

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.

Mohr, W.

M. Haardt, W. Mohr, and A. G. Siemens, “The complete solution for third-generation wireless communications: two modes on air, one winning strategy,” IEEE Pers. Commun. 7, 18-24 (2000).

Nahm, S. M.

A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).

Ong, L. C.

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.

Park, S.

B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
[CrossRef]

Proakis, J. G.

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001).

Sabella, R.

R. Sabella, “Performance analysis of wireless broadband system employing optical fiber links,” IEEE Trans. Commun. 47, 715-721 (1999).

Schuh, R. E.

D. Wake and R. E. Schuh, “Mesaurement and simulation of W-CDMA signal transmission over optical fibre,” Electron. Lett. 36, 901-902 (2000).
[CrossRef]

Shankar, P. M.

B. J. Koshy and P. M. Shankar, “Spread-spectrum techniques for fiber-fed micro cellular networks,” IEEE Trans. Veh. Technol. 48, 847-857 (1999).

Siemens, A. G.

M. Haardt, W. Mohr, and A. G. Siemens, “The complete solution for third-generation wireless communications: two modes on air, one winning strategy,” IEEE Pers. Commun. 7, 18-24 (2000).

Simon, M. K.

C. L. Wing, M. S. Alouini, and M. K. Simon, “Optimum spreading bandwidth for selective RAKE reception over Rayleigh fading channels,” IEEE J. Sel. Areas Commun. 19, 1080-1089 (2001).

Snowden, C. M.

S. Iezekeil, C. M. Snowden, and M. J. Howes, “Modelling of laser diodes under direct microwave intensity modulation,” in IEE Colloquim on Optical Control and Generation of Microwave and Millimeter-Wave Signals (IEE, 1989), pp. 1-8.

Sotobayashi, H.

K. Kitayama, H. Sotobayashi, and N. Wada, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626 (1999).

Tachikawa, K.

K. Tachikawa, “A perspective on the evolution of mobile communications,” IEEE Commun. Mag. 41(10), 66-73 (2003).
[CrossRef]

Tang, P. K.

P. K. Tang, L. C. Ong, A. Alphones, B. Luo, and M. Fujise, “PER and EVM measurements of a radio over fiber network for cellular and WLAN system applications,” J. Lightwave Technol. 22, 2370-2376 (2004).

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.

Tsao, H. W.

J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. Veh. Technol. 47, 84-94 (1998).
[CrossRef]

Tsukamaoto, K.

S. Kajiya, K. Tsukamaoto, and S. Komaki, “Proposal of fiber-optic radio high way networks using CDMA method,” IEICE Trans. Electron. E79-C, 496-500 (1996).

Wada, N.

K. Kitayama, H. Sotobayashi, and N. Wada, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626 (1999).

Wake, D.

D. Wake and R. E. Schuh, “Mesaurement and simulation of W-CDMA signal transmission over optical fibre,” Electron. Lett. 36, 901-902 (2000).
[CrossRef]

Way, W. I.

W. I. Way, “Optical fiber based microcellular systems: an overview,” IEICE Trans. Commun. E76-B, 1091-1101 (1993).

Wing, C. L.

C. L. Wing, M. S. Alouini, and M. K. Simon, “Optimum spreading bandwidth for selective RAKE reception over Rayleigh fading channels,” IEEE J. Sel. Areas Commun. 19, 1080-1089 (2001).

Wu, J.

J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. Veh. Technol. 47, 84-94 (1998).
[CrossRef]

Wu, J. S.

J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. Veh. Technol. 47, 84-94 (1998).
[CrossRef]

Yeon, Y.

B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
[CrossRef]

Electron. Lett. (2)

A. J. Cooper, “Fibre/radio for the provision of cordless/mobile telephony services in the access network,” Electron. Lett. 26, 2054-2056 (1990).

D. Wake and R. E. Schuh, “Mesaurement and simulation of W-CDMA signal transmission over optical fibre,” Electron. Lett. 36, 901-902 (2000).
[CrossRef]

IEEE Commun. Mag. (1)

K. Tachikawa, “A perspective on the evolution of mobile communications,” IEEE Commun. Mag. 41(10), 66-73 (2003).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

C. L. Wing, M. S. Alouini, and M. K. Simon, “Optimum spreading bandwidth for selective RAKE reception over Rayleigh fading channels,” IEEE J. Sel. Areas Commun. 19, 1080-1089 (2001).

IEEE Pers. Commun. (1)

M. Haardt, W. Mohr, and A. G. Siemens, “The complete solution for third-generation wireless communications: two modes on air, one winning strategy,” IEEE Pers. Commun. 7, 18-24 (2000).

IEEE Photon. Technol. Lett. (1)

B. K. Kim, S. Park, Y. Yeon, and B. W. Kim, “Radio-over-fiber system using fiber-grating-based optical CDMA with modified PN codes,” IEEE Photon. Technol. Lett. 15, 1485-1487 (2003).
[CrossRef]

IEEE Trans. Commun. (1)

R. Sabella, “Performance analysis of wireless broadband system employing optical fiber links,” IEEE Trans. Commun. 47, 715-721 (1999).

IEEE Trans. Consum. Electron. (1)

A. Kim, Y. H. Joo, and Y. S. Kim, “60 GHz wireless communication system with radio-over-fiber links for indoor wireless LANS,” IEEE Trans. Consum. Electron. 50, 517-520 (2004).

IEEE Trans. Veh. Technol. (2)

B. J. Koshy and P. M. Shankar, “Spread-spectrum techniques for fiber-fed micro cellular networks,” IEEE Trans. Veh. Technol. 48, 847-857 (1999).

J. S. Wu, J. Wu, and H. W. Tsao, “A radio-over-fiber network for microcellular system application,” IEEE Trans. Veh. Technol. 47, 84-94 (1998).
[CrossRef]

IEICE Trans. Commun. (1)

W. I. Way, “Optical fiber based microcellular systems: an overview,” IEICE Trans. Commun. E76-B, 1091-1101 (1993).

IEICE Trans. Electron. (1)

S. Kajiya, K. Tsukamaoto, and S. Komaki, “Proposal of fiber-optic radio high way networks using CDMA method,” IEICE Trans. Electron. E79-C, 496-500 (1996).

IEICE Trans. Fundamentals (2)

K. Kitayama, H. Sotobayashi, and N. Wada, “Optical code division multiplexing (OCDM) and its applications to photonic networks,” IEICE Trans. Fundamentals E82-A, 2616-2626 (1999).

M. Fujise, “Radio over fiber transmission technology for ITS and mobile communications,” IEICE Trans. Fundamentals E84-A, 1808-1814 (2001).

J. Lightwave Technol. (1)

Microwave Opt. Technol. Lett. (1)

A. Kim, Y. H. Ju, Y. S. Kim, and S. M. Nahm, “Hybrid fiber radio systems for pico-cell communications,” Microwave Opt. Technol. Lett. 33, 328-330 (2003).

Other (6)

H. Al-Raweshidy and S. Komaki, Radio over Fiber Technologies for Mobile Communication Networks (Artech House, 2002).

3GPP Standards, http://www.3gpp.org.

J. G. Proakis, Digital Communications, 4th ed. (McGraw-Hill, 2001).

S. Iezekeil, C. M. Snowden, and M. J. Howes, “Modelling of laser diodes under direct microwave intensity modulation,” in IEE Colloquim on Optical Control and Generation of Microwave and Millimeter-Wave Signals (IEE, 1989), pp. 1-8.

G. P. Agarwal, Fiber Optic Communication Systems (Wiley Interscience, 2002).

P. K. Tang, L. C. Ong, B. Luo, A. Alphones, and M. Fujise, “Transmission of multiple wireless standards over a radio-over-fiber network,” in IEEE MTT-S International Microwave Symposium Digest (IEEE, 2004), pp. 2051-2054.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.