Abstract

What we believe to be a novel system for the distribution of high-definition video streams in a residential environment is demonstrated. The system utilizes impulse radio ultrawideband (IR-UWB) technology integrated with a fiber-based distribution network. The pulses are directly generated in the optical domain, and the receiver is implemented with a carrier recovery system for the demodulation. The system was built and tested to demonstrate error-free operation of the distribution network and the receiver. Spectrum shaping by varying the pulse position within the bit slot to optimize system performance is also examined.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.
  2. G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
    [CrossRef]
  3. A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
    [CrossRef]
  4. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).
  5. G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36-47 (2003).
    [CrossRef]
  6. “Revision of part 15 of the Commission's rules regarding ultra-wideband transmission systems,” First Note and Order, Federal Communications Commission, ETDocket 98-153, April 22, 2002.
  7. M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless-access communications,” IEEE Trans. Commun. 48, 679-689 (2000).
    [CrossRef]
  8. A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).
  9. X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” in IEEE International Symposium on Circuits and Systems (IEEE, 2002), pp. 1597-1600.
  10. Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.
  11. M. Y. Wah, Y. Chia, and Y. L. Ming, “Wireless ultra wideband communications using radio over fiber,” in IEEE Conference on Ultra Wideband Systems and Technologies (IEEE, 2003), pp. 265-269.
  12. A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).
  13. P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
    [CrossRef]

2008 (2)

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).

2004 (2)

P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
[CrossRef]

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

2003 (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36-47 (2003).
[CrossRef]

2002 (1)

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

2000 (1)

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless-access communications,” IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

1998 (1)

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
[CrossRef]

Aiello, G. R.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36-47 (2003).
[CrossRef]

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Anandarajah, P.

P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

Balakrishnan, J.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

Barry, L.

P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
[CrossRef]

Barry, L. P.

A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

Batra, A.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Cabon, B.

Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Chang, G.-K.

J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.

Chen, X.

X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” in IEEE International Symposium on Circuits and Systems (IEEE, 2002), pp. 1597-1600.

Chia, Y.

M. Y. Wah, Y. Chia, and Y. L. Ming, “Wireless ultra wideband communications using radio over fiber,” in IEEE Conference on Ultra Wideband Systems and Technologies (IEEE, 2003), pp. 265-269.

Clarke, A.

P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
[CrossRef]

Dabak, A.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

Ellinas, G.

J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.

Foerster, J. R.

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

Jia, Z.

J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.

Kaszubowska, A.

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

Kaszubowska-Anandarajah, A.

A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).

Kiaei, S.

X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” in IEEE International Symposium on Circuits and Systems (IEEE, 2002), pp. 1597-1600.

Le Guennec, Y.

Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.

Lim, C.

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
[CrossRef]

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Lombard, P.

Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.

Lourdiane, M.

Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.

Maguire, P.

P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
[CrossRef]

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Maury, G.

Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.

Ming, Y. L.

M. Y. Wah, Y. Chia, and Y. L. Ming, “Wireless ultra wideband communications using radio over fiber,” in IEEE Conference on Ultra Wideband Systems and Technologies (IEEE, 2003), pp. 265-269.

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Novak, D.

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
[CrossRef]

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

Perry, P.

A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).

Rogerson, G. D.

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36-47 (2003).
[CrossRef]

Scholtz, R. A.

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless-access communications,” IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

Shams, H.

A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).

Smith, G. H.

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
[CrossRef]

Wah, M. Y.

M. Y. Wah, Y. Chia, and Y. L. Ming, “Wireless ultra wideband communications using radio over fiber,” in IEEE Conference on Ultra Wideband Systems and Technologies (IEEE, 2003), pp. 265-269.

Wang, T.

J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.

Win, M. Z.

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless-access communications,” IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

Yu, J.

J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.

IEEE Microw. Mag. (1)

G. R. Aiello and G. D. Rogerson, “Ultra-wideband wireless systems,” IEEE Microw. Mag. 4(2), 36-47 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

G. H. Smith, D. Novak, and C. Lim, “A millimeter-wave full-duplex fiber-radio star-tree architecture incorporating WDM and SCM,” IEEE Photon. Technol. Lett. 10, 1650-1652 (1998).
[CrossRef]

A. Kaszubowska, P. Anandarajah, and L. P. Barry, “Multiple RF carrier distribution in a hybrid radio/fiber system employing a self-pulsating laser diode transmitter,” IEEE Photon. Technol. Lett. 14, 1599-1601 (2002).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo, and J. Marti, “Ultra-wideband radio signals distribution in FTTH networks,” IEEE Photon. Technol. Lett. 20, 945-947 (2008).

A. Kaszubowska-Anandarajah, P. Perry, L. P. Barry, and H. Shams, “An IR-UWB photonic distribution system,” IEEE Photon. Technol. Lett. 20, 1884-1886 (2008).

P. Anandarajah, P. Maguire, A. Clarke, and L. Barry, “Self-seeding of a gain-switched integrated dual-laser source for the generation of highly wavelength-tunable picosecond optical pulses,” IEEE Photon. Technol. Lett. 16, 629-631 (2004).
[CrossRef]

IEEE Trans. Commun. (1)

M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spreadspectrum impulse radio for wireless-access communications,” IEEE Trans. Commun. 48, 679-689 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. Batra, J. Balakrishnan, G. R. Aiello, J. R. Foerster, and A. Dabak, “Design of a multiband OFDM system for realistic UWB channel environments,” IEEE Trans. Microwave Theory Tech. 52, 2123--2138 (2004).

Other (5)

X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” in IEEE International Symposium on Circuits and Systems (IEEE, 2002), pp. 1597-1600.

Y. Le Guennec, M. Lourdiane, B. Cabon, G. Maury, and P. Lombard, “Technologies for UWB-over-fiber,” in 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2006), pp. 518-519.

M. Y. Wah, Y. Chia, and Y. L. Ming, “Wireless ultra wideband communications using radio over fiber,” in IEEE Conference on Ultra Wideband Systems and Technologies (IEEE, 2003), pp. 265-269.

“Revision of part 15 of the Commission's rules regarding ultra-wideband transmission systems,” First Note and Order, Federal Communications Commission, ETDocket 98-153, April 22, 2002.

J. Yu, Z. Jia, T. Wang, G.-K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF systems to provide 2.5Gb/s per channel symmetric data services,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper OThM5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.