Abstract

We present a constraint-based routing (CBR) approach for real-time operation considering both linear as well as nonlinear signal quality degrading effects in a heterogeneous network infrastructure. Different novel routing algorithms are assessed regarding their blocking probabilities. Furthermore, regenerator pools are placed at a limited number of nodes selected by a heuristic algorithm taking into account the physical impairments. It is shown that CBR together with intelligent regenerator placement can decrease the blocking probability significantly.

© 2008 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).
  2. I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWR 1.
  3. C. T. Politi, V. Anagnostopoulos, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware routing algorithms based on analytically calculated Q-factor,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OFG 1.
  4. G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint routing in 2R-based long haul optical networks,” in Proceedings of the European Conference on Optical Communication (2006).
  5. COST266: Pan-European reference networks, http://sndlib.zib.de.
  6. A. Dwivedi and R. E. Wagner, “Traffic model for USA long-distance optical network,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2000), paper TuK1-1.
  7. S. Pachnicke, J. Reichert, S. Spälter, and E. Voges, “Fast analytical assessment of the signal quality in transparent optical networks,” J. Lightwave Technol. 24, 815-824 (2006).
    [CrossRef]
  8. E. Desurvire, Erbium-Doped Fiber Amplifiers Principles and Applications (Wiley, 1994).
  9. A. V. T. Cartaxo, “Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 7, 178-190 (1999).
  10. S. Pachnicke, T. Gravemann, M. Windmann, and E. Voges, “Physically constrained routing in 10-Gb/s DWDM networks including fiber nonlinearities and polarization effects,” J. Lightwave Technol. 24, 3418-3426 (2006).
    [CrossRef]
  11. J. Proakis, Digital Communications (McGraw-Hill, 1995).
  12. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).
  13. W. Zeiler, F. Di Pasquale, P. Bayvel, and J. E. Midwinter, “Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks,” J. Lightwave Technol. 14, 1933-1996 (1996).
    [CrossRef]
  14. M. Vasilyev, I. Tomkos, M. Mehendale, J.-K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, “Transparent ultra-long-haul DWDM Networks with broadcast-and-select OADM/OXC architecture,” J. Lightwave Technol. 21, 2661-2672 (2003).
    [CrossRef]
  15. L. Kleinrock, Queueing Systems (Wiley, 1975).
  16. D. A. Schupke, M. Jäger, and R. Hülsermann, “Comparison of resilience mechanisms for dynamic services in intelligent optical networks,” in Proceedings of the Fourth International Workshop on Design of Reliable Communication Networks (IEEE, 2003).
  17. Y. Ouyang, Q. Zeng, and W. Wei, “Dynamic lightpath provisioning with signal quality guarantees in survivable translucent optical networks,” Opt. Express 13, 10451-10468 (2005).
  18. J. M. Simmons, “Network design in realistic all-optical backbone networks,” IEEE Commun. Mag. 44(11), 88-94 (2006).
  19. S. Chen and S. Raghavan, “The regenerator location problem,” Working paper, Smith School of Business, University of Maryland (2006).
  20. B. Ramamurthy, S. Yaragorla, and X. Yang, “Translucent optical WDM networks for the next-generation backbone networks,” in Proceedings of IEEE GlobeCom (IEEE, 2001).

2007 (1)

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

2006 (3)

2005 (1)

Y. Ouyang, Q. Zeng, and W. Wei, “Dynamic lightpath provisioning with signal quality guarantees in survivable translucent optical networks,” Opt. Express 13, 10451-10468 (2005).

2003 (1)

1999 (1)

A. V. T. Cartaxo, “Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 7, 178-190 (1999).

1996 (1)

W. Zeiler, F. Di Pasquale, P. Bayvel, and J. E. Midwinter, “Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks,” J. Lightwave Technol. 14, 1933-1996 (1996).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

Ajgaonkar, M.

Anagnostopoulos, V.

C. T. Politi, V. Anagnostopoulos, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware routing algorithms based on analytically calculated Q-factor,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OFG 1.

Bayvel, P.

W. Zeiler, F. Di Pasquale, P. Bayvel, and J. E. Midwinter, “Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks,” J. Lightwave Technol. 14, 1933-1996 (1996).
[CrossRef]

Cartaxo, A. V. T.

A. V. T. Cartaxo, “Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators,” J. Lightwave Technol. 7, 178-190 (1999).

Chen, S.

S. Chen and S. Raghavan, “The regenerator location problem,” Working paper, Smith School of Business, University of Maryland (2006).

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers Principles and Applications (Wiley, 1994).

Di Pasquale, F.

W. Zeiler, F. Di Pasquale, P. Bayvel, and J. E. Midwinter, “Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks,” J. Lightwave Technol. 14, 1933-1996 (1996).
[CrossRef]

Dwivedi, A.

A. Dwivedi and R. E. Wagner, “Traffic model for USA long-distance optical network,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2000), paper TuK1-1.

Gravemann, T.

Gunkel, M.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

Haunstein, H.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

Hülsermann, R.

D. A. Schupke, M. Jäger, and R. Hülsermann, “Comparison of resilience mechanisms for dynamic services in intelligent optical networks,” in Proceedings of the Fourth International Workshop on Design of Reliable Communication Networks (IEEE, 2003).

Jäger, M.

D. A. Schupke, M. Jäger, and R. Hülsermann, “Comparison of resilience mechanisms for dynamic services in intelligent optical networks,” in Proceedings of the Fourth International Workshop on Design of Reliable Communication Networks (IEEE, 2003).

Kleinrock, L.

L. Kleinrock, Queueing Systems (Wiley, 1975).

Kobyakov, A.

Lord, A.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

Markidis, G.

I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWR 1.

G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint routing in 2R-based long haul optical networks,” in Proceedings of the European Conference on Optical Communication (2006).

Martensson, J.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

Matrakidis, C.

C. T. Politi, V. Anagnostopoulos, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware routing algorithms based on analytically calculated Q-factor,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OFG 1.

Mehendale, M.

Midwinter, J. E.

W. Zeiler, F. Di Pasquale, P. Bayvel, and J. E. Midwinter, “Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks,” J. Lightwave Technol. 14, 1933-1996 (1996).
[CrossRef]

Ouyang, Y.

Y. Ouyang, Q. Zeng, and W. Wei, “Dynamic lightpath provisioning with signal quality guarantees in survivable translucent optical networks,” Opt. Express 13, 10451-10468 (2005).

Pachnicke, S.

Politi, C. T.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

C. T. Politi, V. Anagnostopoulos, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware routing algorithms based on analytically calculated Q-factor,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OFG 1.

Proakis, J.

J. Proakis, Digital Communications (McGraw-Hill, 1995).

Raghavan, S.

S. Chen and S. Raghavan, “The regenerator location problem,” Working paper, Smith School of Business, University of Maryland (2006).

Ramamurthy, B.

B. Ramamurthy, S. Yaragorla, and X. Yang, “Translucent optical WDM networks for the next-generation backbone networks,” in Proceedings of IEEE GlobeCom (IEEE, 2001).

Reichert, J.

Rhee, J.-K.

Schupke, D. A.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

D. A. Schupke, M. Jäger, and R. Hülsermann, “Comparison of resilience mechanisms for dynamic services in intelligent optical networks,” in Proceedings of the Fourth International Workshop on Design of Reliable Communication Networks (IEEE, 2003).

Sharma, M.

Simmons, J. M.

J. M. Simmons, “Network design in realistic all-optical backbone networks,” IEEE Commun. Mag. 44(11), 88-94 (2006).

Spälter, S.

Stavdas, A.

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

C. T. Politi, V. Anagnostopoulos, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware routing algorithms based on analytically calculated Q-factor,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OFG 1.

Sygletos, S.

G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint routing in 2R-based long haul optical networks,” in Proceedings of the European Conference on Optical Communication (2006).

I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWR 1.

Tomkos, I.

M. Vasilyev, I. Tomkos, M. Mehendale, J.-K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, “Transparent ultra-long-haul DWDM Networks with broadcast-and-select OADM/OXC architecture,” J. Lightwave Technol. 21, 2661-2672 (2003).
[CrossRef]

I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWR 1.

G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint routing in 2R-based long haul optical networks,” in Proceedings of the European Conference on Optical Communication (2006).

Tsuda, S.

Tzanakaki, A.

G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint routing in 2R-based long haul optical networks,” in Proceedings of the European Conference on Optical Communication (2006).

I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWR 1.

Vasilyev, M.

Voges, E.

Wagner, R. E.

A. Dwivedi and R. E. Wagner, “Traffic model for USA long-distance optical network,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2000), paper TuK1-1.

Wei, W.

Y. Ouyang, Q. Zeng, and W. Wei, “Dynamic lightpath provisioning with signal quality guarantees in survivable translucent optical networks,” Opt. Express 13, 10451-10468 (2005).

Windmann, M.

Yang, X.

B. Ramamurthy, S. Yaragorla, and X. Yang, “Translucent optical WDM networks for the next-generation backbone networks,” in Proceedings of IEEE GlobeCom (IEEE, 2001).

Yaragorla, S.

B. Ramamurthy, S. Yaragorla, and X. Yang, “Translucent optical WDM networks for the next-generation backbone networks,” in Proceedings of IEEE GlobeCom (IEEE, 2001).

Zeiler, W.

W. Zeiler, F. Di Pasquale, P. Bayvel, and J. E. Midwinter, “Modeling of four-wave mixing and gain peaking in amplified WDM optical communication systems and networks,” J. Lightwave Technol. 14, 1933-1996 (1996).
[CrossRef]

Zeng, Q.

Y. Ouyang, Q. Zeng, and W. Wei, “Dynamic lightpath provisioning with signal quality guarantees in survivable translucent optical networks,” Opt. Express 13, 10451-10468 (2005).

IEEE Commun. Mag. (2)

C. T. Politi, H. Haunstein, D. A. Schupke, A. Stavdas, M. Gunkel, J. Martensson, A. Lord, and J. Martensson, “Integrated design and operation of a transparent optical network: a systematic approach to include physical layer awareness and cost function,” IEEE Commun. Mag. 45(2), 40-47 (2007).

J. M. Simmons, “Network design in realistic all-optical backbone networks,” IEEE Commun. Mag. 44(11), 88-94 (2006).

J. Lightwave Technol. (5)

Opt. Express (1)

Y. Ouyang, Q. Zeng, and W. Wei, “Dynamic lightpath provisioning with signal quality guarantees in survivable translucent optical networks,” Opt. Express 13, 10451-10468 (2005).

Other (12)

J. Proakis, Digital Communications (McGraw-Hill, 1995).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic, 2001).

I. Tomkos, S. Sygletos, A. Tzanakaki, and G. Markidis, “Impairment constraint based routing in mesh optical networks,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2007), paper OWR 1.

C. T. Politi, V. Anagnostopoulos, C. Matrakidis, and A. Stavdas, “Physical layer impairment aware routing algorithms based on analytically calculated Q-factor,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2006), paper OFG 1.

G. Markidis, S. Sygletos, A. Tzanakaki, and I. Tomkos, “Impairment constraint routing in 2R-based long haul optical networks,” in Proceedings of the European Conference on Optical Communication (2006).

COST266: Pan-European reference networks, http://sndlib.zib.de.

A. Dwivedi and R. E. Wagner, “Traffic model for USA long-distance optical network,” in Proceedings of the Optical Fiber Communication Conference (Optical Society of America, 2000), paper TuK1-1.

L. Kleinrock, Queueing Systems (Wiley, 1975).

D. A. Schupke, M. Jäger, and R. Hülsermann, “Comparison of resilience mechanisms for dynamic services in intelligent optical networks,” in Proceedings of the Fourth International Workshop on Design of Reliable Communication Networks (IEEE, 2003).

E. Desurvire, Erbium-Doped Fiber Amplifiers Principles and Applications (Wiley, 1994).

S. Chen and S. Raghavan, “The regenerator location problem,” Working paper, Smith School of Business, University of Maryland (2006).

B. Ramamurthy, S. Yaragorla, and X. Yang, “Translucent optical WDM networks for the next-generation backbone networks,” in Proceedings of IEEE GlobeCom (IEEE, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.