Abstract

A cost-effective and smooth evolution scheme from a time-division multiplexing–passive optical network (TDM-PON) to a WDM-overlaid PON that can provide high-speed fiber-to-the-home service to a wide area with a high population density is proposed. Existing optical transmitters of TDM-PON optical network units (ONUs) are reusable by employing a wavelength-conversion node at the ONU site, which transforms the wavelength of each ONU to a predefined WDM wavelength. A specially designed optical router is needed at a remote node site; it should broadcast downstream signals to each ONU, routing upstream ONU signals to a wavelength-conversion node and passing the wavelength-converted signal to an optical line terminal. A simple but efficient remote node structure is proposed. A wavelength conversion node should be designed carefully since it repeats burst-mode signals from multiple ONUs. A 2R repeater-based wavelength conversion node is suggested. Performance of various schemes is analyzed and their measurement results are provided.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72-78 (2005).
    [CrossRef]
  2. M. Tsubokawa, “Flexible access technologies to upgrade PONs,” in Proceedings of the Optoelectronics and Communication Conference (2007), pp. 8-9.
  3. O. Ishida, “Ethernet optical interfaces: today and tomorrow,” tutorial presented at the Optoelectronics and Communication Conference, Kanagawa, Japan, July 9-13, 2007.
  4. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
    [CrossRef]
  5. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
    [CrossRef]
  6. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
    [CrossRef]
  7. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
    [CrossRef]
  8. IEEE 802.3ah, “Media access control parameters, physical layers, and management parameters for subscriber access networks” (IEEE, 2004).
  9. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), pp. 172-174.

2005 (2)

H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72-78 (2005).
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

2004 (1)

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

2000 (1)

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
[CrossRef]

1998 (1)

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), pp. 172-174.

Ahn, J. G.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

Banerjee, A.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Clarke, F.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Feldman, R. D.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

Harstead, E. E.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

Ishida, O.

O. Ishida, “Ethernet optical interfaces: today and tomorrow,” tutorial presented at the Optoelectronics and Communication Conference, Kanagawa, Japan, July 9-13, 2007.

Jeong, K. T.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

Jiang, S.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

Kim, K.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Kramer, G.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Lee, C. H.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

Maier, G.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
[CrossRef]

Martinelli, M.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
[CrossRef]

Mukherjee, B.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Park, H. J.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

Park, S. J.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

Park, Y.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Pattavina, A.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
[CrossRef]

Salvadori, E.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
[CrossRef]

Shinohara, H.

H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72-78 (2005).
[CrossRef]

Song, H.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Song, K. H.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

Tsubokawa, M.

M. Tsubokawa, “Flexible access technologies to upgrade PONs,” in Proceedings of the Optoelectronics and Communication Conference (2007), pp. 8-9.

Wood, T. H.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

Yang, S.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Zirngibl, M.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

IEEE Commun. Mag. (1)

H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72-78 (2005).
[CrossRef]

J. Lightwave Technol. (3)

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546-1559 (1998).
[CrossRef]

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125-143 (2000).
[CrossRef]

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582-2590 (2004).
[CrossRef]

J. Opt. Netw. (1)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737-758 (2005).
[CrossRef]

Other (4)

M. Tsubokawa, “Flexible access technologies to upgrade PONs,” in Proceedings of the Optoelectronics and Communication Conference (2007), pp. 8-9.

O. Ishida, “Ethernet optical interfaces: today and tomorrow,” tutorial presented at the Optoelectronics and Communication Conference, Kanagawa, Japan, July 9-13, 2007.

IEEE 802.3ah, “Media access control parameters, physical layers, and management parameters for subscriber access networks” (IEEE, 2004).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), pp. 172-174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Architecture of the proposed WDM-overlaid PON.

Fig. 2
Fig. 2

Structures of a remote node. (a) With circulator, (b) with two CWDMs, and (c) with one CWDM.

Fig. 3
Fig. 3

Classification of WCN by location. (a) Separated and (b) ONU-integrated types.

Fig. 4
Fig. 4

Effect of the WCN on upstream signals. (a) Input and (b) output optical signals.

Fig. 5
Fig. 5

Performance change upon various ONU power levels received at the WCN.

Fig. 6
Fig. 6

Cost comparison for various PON types. ONU cost with (a) 16 and (b) a various number of ONUs per PON.

Fig. 7
Fig. 7

Experimental setup of the WDM-overlaid PON.

Fig. 8
Fig. 8

Optical spectra of the upstream signal. (a) ONU and (b) RN outputs. (c) OLT input.

Fig. 9
Fig. 9

Transmission performance of the proposed WDM-overlaid PON. (a) Optical spectrum of upstream signals. (b) BER of wavelength converted ONU signal.

Tables (2)

Tables Icon

Table 1 Power Loss Comparison between the Proposed Architecture and Legacy TDM-PON

Tables Icon

Table 2 Cost Analysis for Various PON Types

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Power penalty [ dB ] = 10 log 10 [ P ¯ rec ( r I ) P ¯ rec ( 0 ) ] = 10 log 10 ( 1 r I 2 Q 2 ) .
P i = m i ( 2 P APC ) ,
E R i = P APC + P i 2 P APC P i 2 = 1 + m i 1 m i .
P ¯ rec , i ( E R i + 1 E R i 1 ) σ T Q R ( ( 1 + m i ) ( 1 m i ) + 1 ( 1 + m i ) ( 1 m i ) 1 ) σ T Q R 1 m i σ T Q R ,
Power penalty [ dB ] = 10 log 10 ( P ¯ rec , i P ¯ rec , E R = ) = 10 log 10 ( 1 m i ) .