Abstract

A cost-effective and smooth evolution scheme from a time-division multiplexing–passive optical network (TDM-PON) to a WDM-overlaid PON that can provide high-speed fiber-to-the-home service to a wide area with a high population density is proposed. Existing optical transmitters of TDM-PON optical network units (ONUs) are reusable by employing a wavelength-conversion node at the ONU site, which transforms the wavelength of each ONU to a predefined WDM wavelength. A specially designed optical router is needed at a remote node site; it should broadcast downstream signals to each ONU, routing upstream ONU signals to a wavelength-conversion node and passing the wavelength-converted signal to an optical line terminal. A simple but efficient remote node structure is proposed. A wavelength conversion node should be designed carefully since it repeats burst-mode signals from multiple ONUs. A 2R repeater-based wavelength conversion node is suggested. Performance of various schemes is analyzed and their measurement results are provided.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72–78 (2005).
    [CrossRef]
  2. M. Tsubokawa, “Flexible access technologies to upgrade PONs,” in Proceedings of the Optoelectronics and Communication Conference (2007), pp. 8–9.
  3. O. Ishida, “Ethernet optical interfaces: today and tomorrow,” tutorial presented at the Optoelectronics and Communication Conference, Kanagawa, Japan, July 9–13, 2007.
  4. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
    [CrossRef]
  5. R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
    [CrossRef]
  6. G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
    [CrossRef]
  7. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
    [CrossRef]
  8. IEEE 802.3ah, “Media access control parameters, physical layers, and management parameters for subscriber access networks” (IEEE, 2004).
  9. G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), pp. 172–174.

2005 (2)

H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72–78 (2005).
[CrossRef]

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

2004 (1)

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

2000 (1)

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
[CrossRef]

1998 (1)

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), pp. 172–174.

Ahn, J. G.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

Banerjee, A.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Clarke, F.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Feldman, R. D.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

Harstead, E. E.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

Ishida, O.

O. Ishida, “Ethernet optical interfaces: today and tomorrow,” tutorial presented at the Optoelectronics and Communication Conference, Kanagawa, Japan, July 9–13, 2007.

Jeong, K. T.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

Jiang, S.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

Kim, K.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Kramer, G.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Lee, C. H.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

Maier, G.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
[CrossRef]

Martinelli, M.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
[CrossRef]

Mukherjee, B.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Park, H. J.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

Park, S. J.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

Park, Y.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Pattavina, A.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
[CrossRef]

Salvadori, E.

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
[CrossRef]

Shinohara, H.

H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72–78 (2005).
[CrossRef]

Song, H.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Song, K. H.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

Tsubokawa, M.

M. Tsubokawa, “Flexible access technologies to upgrade PONs,” in Proceedings of the Optoelectronics and Communication Conference (2007), pp. 8–9.

Wood, T. H.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

Yang, S.

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Zirngibl, M.

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

IEEE Commun. Mag. (1)

H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Commun. Mag. 43(9), 72–78 (2005).
[CrossRef]

J. Lightwave Technol. (3)

R. D. Feldman, E. E. Harstead, S. Jiang, T. H. Wood, and M. Zirngibl, “An evaluation of architectures incorporating wavelength division multiplexing for broad-band fiber access,” J. Lightwave Technol. 9, 1546–1559 (1998).
[CrossRef]

G. Maier, M. Martinelli, A. Pattavina, and E. Salvadori, “Design and cost performance of the multistage WDM-PON access networks,” J. Lightwave Technol. 2, 125–143 (2000).
[CrossRef]

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 11, 2582–2590 (2004).
[CrossRef]

J. Opt. Netw. (1)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “A review of WDM-PON technologies for broadband access,” J. Opt. Netw. 11, 737–758 (2005).
[CrossRef]

Other (4)

M. Tsubokawa, “Flexible access technologies to upgrade PONs,” in Proceedings of the Optoelectronics and Communication Conference (2007), pp. 8–9.

O. Ishida, “Ethernet optical interfaces: today and tomorrow,” tutorial presented at the Optoelectronics and Communication Conference, Kanagawa, Japan, July 9–13, 2007.

IEEE 802.3ah, “Media access control parameters, physical layers, and management parameters for subscriber access networks” (IEEE, 2004).

G. P. Agrawal, Fiber-Optic Communication Systems (Wiley, 1997), pp. 172–174.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Architecture of the proposed WDM-overlaid PON.

Fig. 2
Fig. 2

Structures of a remote node. (a) With circulator, (b) with two CWDMs, and (c) with one CWDM.

Fig. 3
Fig. 3

Classification of WCN by location. (a) Separated and (b) ONU-integrated types.

Fig. 4
Fig. 4

Effect of the WCN on upstream signals. (a) Input and (b) output optical signals.

Fig. 5
Fig. 5

Performance change upon various ONU power levels received at the WCN.

Fig. 6
Fig. 6

Cost comparison for various PON types. ONU cost with (a) 16 and (b) a various number of ONUs per PON.

Fig. 7
Fig. 7

Experimental setup of the WDM-overlaid PON.

Fig. 8
Fig. 8

Optical spectra of the upstream signal. (a) ONU and (b) RN outputs. (c) OLT input.

Fig. 9
Fig. 9

Transmission performance of the proposed WDM-overlaid PON. (a) Optical spectrum of upstream signals. (b) BER of wavelength converted ONU signal.

Tables (2)

Tables Icon

Table 1 Power Loss Comparison between the Proposed Architecture and Legacy TDM-PON

Tables Icon

Table 2 Cost Analysis for Various PON Types

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Power penalty [ dB ] = 10 log 10 [ P ¯ rec ( r I ) P ¯ rec ( 0 ) ] = 10 log 10 ( 1 r I 2 Q 2 ) .
P i = m i ( 2 P APC ) ,
E R i = P APC + P i 2 P APC P i 2 = 1 + m i 1 m i .
P ¯ rec , i ( E R i + 1 E R i 1 ) σ T Q R ( ( 1 + m i ) ( 1 m i ) + 1 ( 1 + m i ) ( 1 m i ) 1 ) σ T Q R 1 m i σ T Q R ,
Power penalty [ dB ] = 10 log 10 ( P ¯ rec , i P ¯ rec , E R = ) = 10 log 10 ( 1 m i ) .