Abstract

Grid networks provide users with a transparent way to access computational and storage resources. The introduction of (dense) wavelength division multiplexing techniques have made optical networks the technology of choice for data-intensive grid traffic. In a grid network scenario, users are generally more interested in the successful completion of their jobs than in the location where the actual processing occurs. Job routing and scheduling in current generation grid networks are managed by resource brokers, which assign each job to a resource and route the job in a unicast way. An anycast approach using grid-aware network algorithms would bypass the need for a resource broker and increase scalability. We propose several anycast algorithms for job routing in optical grid networks, based on the concept of ant colony optimization, which draws parallels between the behavior of ants gathering food and the routing of packets inside a network. Simulation results show an increased performance of our algorithms over more classical unicast-based protocols, even though this is accompanied by a slight increase in complexity.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription