Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Maximum throughput traffic grooming in optical networks

Not Accessible

Your library or personal account may give you access

Abstract

In synchronous optical networks (SONETs) and WDM networks, low-rate traffic demands are usually multiplexed to share a high-speed wavelength channel. The multiplexing-demultiplexing is known as traffic grooming and is performed by SONET add-drop multiplexers (SADM). The grooming factor, denoted by k, is the maximum number of low-rate traffic demands that can be multiplexed into one wavelength channel. SADMs are expensive, and thus an important optimization problem for traffic grooming is to maximize the number of accommodated traffic demands subject to a given number of SADMs. We focus on the unidirectional path-switched ring (UPSR) networks with unitary duplex traffic demands. We assume that each network node is equipped with a limited number L of SADMs, and our objective is to maximize the number of accommodated traffic demands in a given set. We prove the NP-hardness of this maximum throughput traffic grooming problem and propose a (k+1)-approximation algorithm. Extensive simulations are conducted to validate the performance of the algorithm. We also study the all-to-all traffic pattern for the maximum throughput traffic grooming problem and propose an algorithm that accommodates at least (nL⌊k⌋)/2 demands for a UPSR with n nodes. We also prove that any optimal solution can accommodate at most (nLk)/2 demands. Thus the solution of our algorithm is at most a constant factor (approximately 2) away from the optimum.

© 2008 Optical Society of America

PDF Article
More Like This
Grooming Traffic to Maximize Throughput in SONET Rings

Charles J. Colbourn, Gaetano Quattrocchi, and Violet R. Syrotiuk
J. Opt. Commun. Netw. 3(1) 10-16 (2011)

Virtualization of elastic optical networks and regenerators with traffic grooming

K. D. R. Assis, A. F. Santos, R. C. Almeida, M. J. Reed, B. Jaumard, and D. Simeonidou
J. Opt. Commun. Netw. 12(12) 428-442 (2020)

Traffic Grooming in Optical Networks: Decomposition and Partial Linear Programming (LP) Relaxation

Hui Wang and George N. Rouskas
J. Opt. Commun. Netw. 5(8) 825-835 (2013)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved