Abstract

An optical routing network for applications requiring large numbers of nodes and low latency, such as the interconnection network inside a future high-end supercomputer, is described. The network is a development of an existing architecture based on a combination of clockwork routing and wavelength division multiplexing (WDM-CR). Although using the same underlying photonic technologies as WDM-CR, the new architecture has several advantages, including the following: the network can be scaled to greater numbers of nodes; routing between closely located nodes is more direct, resulting in lower latency and higher overall throughput; arbitration and control mechanisms are simplified; and the need for optical amplification is removed. Results obtained from full discrete-event traffic simulations demonstrate scalability to interconnection networks as large as 4096 nodes in a flat architecture.

© 2008 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription