Abstract

Two novel strictly nonblocking crossbar-like WDM networks are proposed and used to design what we believe to be new classes of Clos-type networks. The proposed Clos-type networks are based on two design methods, namely, the wavelength-interconnected and the fiber-interconnected methods. The proposed designs enforce wavelength conversion strictly between two prespecified and fixed wavelengths, thus eliminating the need for expensive wide-range wavelength converters. Analysis of hardware complexity shows that the proposed designs can achieve up to 30% reduction in overall cost compared with best-known WDM switching networks while using a smaller number of stages.

© 2007 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Mukherjee, 'WDM optical communication networks: progress and challenges,' IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
    [Crossref]
  2. Y. Yang and J. Wang, 'Cost-effective designs of WDM optical interconnects,' IEEE Trans. Parallel Distrib. Syst. 16, 51-66 (2005).
    [Crossref]
  3. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed. (Academic, 2002).
  4. H. Q. Ngo, D. Pan, and Y. Yang, 'Optical switching networks with minimum number of limited range wavelength converters,' in Proceedings of the 24th Annual Conference on Computer Communications and Networking (INFOCOM 2005) (IEEE, 2005).
  5. H. J. Chao, 'Next generation routers,' Proc. IEEE 90, 1518-1558 (2002).
    [Crossref]
  6. G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, 'Optical switching: switch fabrics, techniques, and architectures,' J. Lightwave Technol. 21, 384-405 (2003).
    [Crossref]
  7. V. Eramo, M. Listanti, and M. Spaziani, 'Resource sharing in optical packet switches with limited-range wavelength converters,' J. Lightwave Technol. 23, 671-687 (2005).
    [Crossref]
  8. B. A. Small, A. Shacham, and K. Bergman, 'Emulation of realistic network traffic patterns on an eight-node data vortex interconnection network subsystem,' J. Opt. Netw. 3, 802-809 (2004).
    [Crossref]
  9. R. Hemenway and R. R. Grzybowski, 'Optical-packet-switched interconnect for supercomputer applications,' J. Opt. Netw. 3, 900-913 (2004).
    [Crossref]
  10. L. A. Buckman Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, D. W. Dolfi, 'Parallel-optical interconnects 100 Gb/s,' J. Lightwave Technol. 22, 2055-2063 (2004).
    [Crossref]
  11. G. Wilfong, B. Mikkelsen, C. Doerr, and M. Zirngibl, 'WDM cross-connect architectures with reduced complexity,' J. Lightwave Technol. 17, 1732-1741 (1999).
    [Crossref]
  12. N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas, and T. E. Stern, 'An architecture for a wavelength-interchanging cross-connect utilizing parametric wavelength converters,' J. Lightwave Technol. 17, 1113-1125 (1999).
    [Crossref]
  13. N. Nagatsu, S. Okamoto, and K. Sato, 'Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,' IEEE J. Sel. Areas Commun. 14, 893-902 (1996).
    [Crossref]
  14. X. Qin and Y. Yang, 'Nonblocking WDM switching networks with full and limited wavelength conversion,' IEEE Trans. Commun. 50, 2032-2041 (2002).
    [Crossref]
  15. Y. Yang, J. Wang, and C. Qiao, 'Nonblocking WDM multicast switching networks,' IEEE Trans. Parallel Distrib. Syst. 11, 1274-1287 (2000).
    [Crossref]
  16. Y. Yang and J. Wang, 'Designing WDM optical interconnects with full connectivity by using limited wavelength conversion,' IEEE Trans. Comput. 53, 1547-1556 (2004).
    [Crossref]
  17. C. G. Guillemot, M. Renaud, M. Gambini, P. Janz, C. Andonovic, I. Bauknecht, R. Bostica, B. Burzio, M. Callegati, F. Casoni, M. Chiaroni, D. Clerot, D. Danielson, S. L. Dorgeuille, F. Dupas, A. Franzen, A. Hansen, P. B. Hunter, D. K. Kloch, A. Krahenbuhl, R. Lavigne, B. Le Corre, A. Raffaelli, C. Schilling, M. Simon, J. C. Zucchelli, and L. Lannien, 'Transparent optical packet switching: the European ACTS KEOPS project approach,' J. Lightwave Technol. 16, 2117-2134 (1998).
    [Crossref]
  18. H. Q. Ngo, D. Pan, and C. Qiao, 'Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 04') (IEEE, 2004), pp. 1352-1362.
  19. H. Q. Ngo, D. Pan, and C. Qiao, 'Constructions and analyses of nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' IEEE/ACM Trans. Netw. 14, 205-217 (2006).
    [Crossref]
  20. H. S. Hamza and J. S. Deogun, 'Designing full-connectivity WDM optical interconnects with reduced switching and conversion complexity,' in Proceedings of the 14th IEEE Hot Interconnects 14, Symposium on High Performance Interconnects (HOTi06) (IEEE, 2006), pp. 25-30.
  21. H. S. Hamza and J. S. Deogun, 'Wavelength exchanging cross-connect (WEX)--A new class of photonic cross-connects,' J. Lightwave Technol. 24, 1101-1111 (2006).
    [Crossref]
  22. A. Chowdhury, S. C. Hagness, and L. McCaughan, 'Simultaneous optical wavelength interchange with a two-dimensional second-order nonlinear photonic crystal,' Opt. Lett. 25, 832-834 (2000).
    [Crossref]
  23. K. Moei, H. Takara, and M. Saruwatari, 'Wavelength interchange with an optical parametric loop mirror,' Electron. Lett. 33, 520-522 (1997).
    [Crossref]
  24. K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
    [Crossref]
  25. H. S. Hamza and J. S. Deogun, 'Designing scalable WDM optical interconnects using predefined wavelength conversion,' J. Opt. Netw. 5, 422-434 (2006).
    [Crossref]
  26. C. Clos, 'A study of nonblocking switching networks,' Bell Syst. Tech. J. 32, 407-424 (1958).
  27. R. A. Spanke, 'Architectures for guided-wave optical space switching systems,' IEEE Commun. Mag. 25, 42-48 (1987).
    [Crossref]

2006 (3)

2005 (2)

Y. Yang and J. Wang, 'Cost-effective designs of WDM optical interconnects,' IEEE Trans. Parallel Distrib. Syst. 16, 51-66 (2005).
[Crossref]

V. Eramo, M. Listanti, and M. Spaziani, 'Resource sharing in optical packet switches with limited-range wavelength converters,' J. Lightwave Technol. 23, 671-687 (2005).
[Crossref]

2004 (4)

2003 (1)

2002 (3)

H. J. Chao, 'Next generation routers,' Proc. IEEE 90, 1518-1558 (2002).
[Crossref]

X. Qin and Y. Yang, 'Nonblocking WDM switching networks with full and limited wavelength conversion,' IEEE Trans. Commun. 50, 2032-2041 (2002).
[Crossref]

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[Crossref]

2000 (3)

Y. Yang, J. Wang, and C. Qiao, 'Nonblocking WDM multicast switching networks,' IEEE Trans. Parallel Distrib. Syst. 11, 1274-1287 (2000).
[Crossref]

A. Chowdhury, S. C. Hagness, and L. McCaughan, 'Simultaneous optical wavelength interchange with a two-dimensional second-order nonlinear photonic crystal,' Opt. Lett. 25, 832-834 (2000).
[Crossref]

B. Mukherjee, 'WDM optical communication networks: progress and challenges,' IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
[Crossref]

1999 (2)

1998 (1)

1997 (1)

K. Moei, H. Takara, and M. Saruwatari, 'Wavelength interchange with an optical parametric loop mirror,' Electron. Lett. 33, 520-522 (1997).
[Crossref]

1996 (1)

N. Nagatsu, S. Okamoto, and K. Sato, 'Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,' IEEE J. Sel. Areas Commun. 14, 893-902 (1996).
[Crossref]

1987 (1)

R. A. Spanke, 'Architectures for guided-wave optical space switching systems,' IEEE Commun. Mag. 25, 42-48 (1987).
[Crossref]

1958 (1)

C. Clos, 'A study of nonblocking switching networks,' Bell Syst. Tech. J. 32, 407-424 (1958).

Andonovic, C.

Antoniades, N.

Bala, K.

Bauknecht, I.

Bergman, K.

Bostica, R.

Buckman Windover, L. A.

Burzio, B.

Callegati, M.

Casoni, F.

Chao, H. J.

H. J. Chao, 'Next generation routers,' Proc. IEEE 90, 1518-1558 (2002).
[Crossref]

Chiaroni, M.

Chowdhury, A.

Clerot, D.

Clos, C.

C. Clos, 'A study of nonblocking switching networks,' Bell Syst. Tech. J. 32, 407-424 (1958).

Danielson, D.

Deogun, J. S.

H. S. Hamza and J. S. Deogun, 'Designing scalable WDM optical interconnects using predefined wavelength conversion,' J. Opt. Netw. 5, 422-434 (2006).
[Crossref]

H. S. Hamza and J. S. Deogun, 'Wavelength exchanging cross-connect (WEX)--A new class of photonic cross-connects,' J. Lightwave Technol. 24, 1101-1111 (2006).
[Crossref]

H. S. Hamza and J. S. Deogun, 'Designing full-connectivity WDM optical interconnects with reduced switching and conversion complexity,' in Proceedings of the 14th IEEE Hot Interconnects 14, Symposium on High Performance Interconnects (HOTi06) (IEEE, 2006), pp. 25-30.

Doerr, C.

Dolfi, D. W.

Dorgeuille, S. L.

Dupas, F.

Ellinas, G.

Eramo, V.

Flower, G. M.

Franzen, A.

Gambini, M.

Giboney, K. S.

Grot, A.

Gruhlke, R. W.

Grzybowski, R. R.

Guillemot, C. G.

Hagness, S. C.

Hamza, H. S.

H. S. Hamza and J. S. Deogun, 'Designing scalable WDM optical interconnects using predefined wavelength conversion,' J. Opt. Netw. 5, 422-434 (2006).
[Crossref]

H. S. Hamza and J. S. Deogun, 'Wavelength exchanging cross-connect (WEX)--A new class of photonic cross-connects,' J. Lightwave Technol. 24, 1101-1111 (2006).
[Crossref]

H. S. Hamza and J. S. Deogun, 'Designing full-connectivity WDM optical interconnects with reduced switching and conversion complexity,' in Proceedings of the 14th IEEE Hot Interconnects 14, Symposium on High Performance Interconnects (HOTi06) (IEEE, 2006), pp. 25-30.

Hansen, A.

Hemenway, R.

Hunter, P. B.

Janz, P.

Kazovsky, L. G.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[Crossref]

Kloch, D. K.

Krahenbuhl, A.

Lannien, L.

Lavigne, R.

Law, B.

Le Corre, B.

Lin, C.-K.

Listanti, M.

Marhic, M. E.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[Crossref]

McCaughan, L.

Mikkelsen, B.

Mirkarimi, L. W.

Moei, K.

K. Moei, H. Takara, and M. Saruwatari, 'Wavelength interchange with an optical parametric loop mirror,' Electron. Lett. 33, 520-522 (1997).
[Crossref]

Mukherjee, B.

B. Mukherjee, 'WDM optical communication networks: progress and challenges,' IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
[Crossref]

Nagatsu, N.

N. Nagatsu, S. Okamoto, and K. Sato, 'Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,' IEEE J. Sel. Areas Commun. 14, 893-902 (1996).
[Crossref]

Ngo, H. Q.

H. Q. Ngo, D. Pan, and C. Qiao, 'Constructions and analyses of nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' IEEE/ACM Trans. Netw. 14, 205-217 (2006).
[Crossref]

H. Q. Ngo, D. Pan, and Y. Yang, 'Optical switching networks with minimum number of limited range wavelength converters,' in Proceedings of the 24th Annual Conference on Computer Communications and Networking (INFOCOM 2005) (IEEE, 2005).

H. Q. Ngo, D. Pan, and C. Qiao, 'Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 04') (IEEE, 2004), pp. 1352-1362.

Okamoto, S.

N. Nagatsu, S. Okamoto, and K. Sato, 'Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,' IEEE J. Sel. Areas Commun. 14, 893-902 (1996).
[Crossref]

Pan, D.

H. Q. Ngo, D. Pan, and C. Qiao, 'Constructions and analyses of nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' IEEE/ACM Trans. Netw. 14, 205-217 (2006).
[Crossref]

H. Q. Ngo, D. Pan, and Y. Yang, 'Optical switching networks with minimum number of limited range wavelength converters,' in Proceedings of the 24th Annual Conference on Computer Communications and Networking (INFOCOM 2005) (IEEE, 2005).

H. Q. Ngo, D. Pan, and C. Qiao, 'Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 04') (IEEE, 2004), pp. 1352-1362.

Papadimitriou, G. I.

Papazoglou, C.

Pomportsis, A. S.

Qiao, C.

H. Q. Ngo, D. Pan, and C. Qiao, 'Constructions and analyses of nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' IEEE/ACM Trans. Netw. 14, 205-217 (2006).
[Crossref]

Y. Yang, J. Wang, and C. Qiao, 'Nonblocking WDM multicast switching networks,' IEEE Trans. Parallel Distrib. Syst. 11, 1274-1287 (2000).
[Crossref]

H. Q. Ngo, D. Pan, and C. Qiao, 'Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 04') (IEEE, 2004), pp. 1352-1362.

Qin, X.

X. Qin and Y. Yang, 'Nonblocking WDM switching networks with full and limited wavelength conversion,' IEEE Trans. Commun. 50, 2032-2041 (2002).
[Crossref]

Raffaelli, A.

Ramaswami, R.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed. (Academic, 2002).

Rankin, G.

Renaud, M.

Rosenau, S. A.

Saruwatari, M.

K. Moei, H. Takara, and M. Saruwatari, 'Wavelength interchange with an optical parametric loop mirror,' Electron. Lett. 33, 520-522 (1997).
[Crossref]

Sato, K.

N. Nagatsu, S. Okamoto, and K. Sato, 'Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,' IEEE J. Sel. Areas Commun. 14, 893-902 (1996).
[Crossref]

Schilling, C.

Shacham, A.

Simon, J. N.

Simon, M.

Sivarajan, K. N.

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed. (Academic, 2002).

Small, B. A.

Spanke, R. A.

R. A. Spanke, 'Architectures for guided-wave optical space switching systems,' IEEE Commun. Mag. 25, 42-48 (1987).
[Crossref]

Spaziani, M.

Stern, T. E.

Takara, H.

K. Moei, H. Takara, and M. Saruwatari, 'Wavelength interchange with an optical parametric loop mirror,' Electron. Lett. 33, 520-522 (1997).
[Crossref]

Tan, M. R. T.

Tandon, A.

Uesaka, K.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[Crossref]

Wang, J.

Y. Yang and J. Wang, 'Cost-effective designs of WDM optical interconnects,' IEEE Trans. Parallel Distrib. Syst. 16, 51-66 (2005).
[Crossref]

Y. Yang and J. Wang, 'Designing WDM optical interconnects with full connectivity by using limited wavelength conversion,' IEEE Trans. Comput. 53, 1547-1556 (2004).
[Crossref]

Y. Yang, J. Wang, and C. Qiao, 'Nonblocking WDM multicast switching networks,' IEEE Trans. Parallel Distrib. Syst. 11, 1274-1287 (2000).
[Crossref]

Wilfong, G.

Wong, K. K.-Y.

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[Crossref]

Xia, H.

Yang, Y.

Y. Yang and J. Wang, 'Cost-effective designs of WDM optical interconnects,' IEEE Trans. Parallel Distrib. Syst. 16, 51-66 (2005).
[Crossref]

Y. Yang and J. Wang, 'Designing WDM optical interconnects with full connectivity by using limited wavelength conversion,' IEEE Trans. Comput. 53, 1547-1556 (2004).
[Crossref]

X. Qin and Y. Yang, 'Nonblocking WDM switching networks with full and limited wavelength conversion,' IEEE Trans. Commun. 50, 2032-2041 (2002).
[Crossref]

Y. Yang, J. Wang, and C. Qiao, 'Nonblocking WDM multicast switching networks,' IEEE Trans. Parallel Distrib. Syst. 11, 1274-1287 (2000).
[Crossref]

H. Q. Ngo, D. Pan, and Y. Yang, 'Optical switching networks with minimum number of limited range wavelength converters,' in Proceedings of the 24th Annual Conference on Computer Communications and Networking (INFOCOM 2005) (IEEE, 2005).

Yoo, S. J. B.

Zirngibl, M.

Zucchelli, J. C.

Bell Syst. Tech. J. (1)

C. Clos, 'A study of nonblocking switching networks,' Bell Syst. Tech. J. 32, 407-424 (1958).

Electron. Lett. (1)

K. Moei, H. Takara, and M. Saruwatari, 'Wavelength interchange with an optical parametric loop mirror,' Electron. Lett. 33, 520-522 (1997).
[Crossref]

IEEE Commun. Mag. (1)

R. A. Spanke, 'Architectures for guided-wave optical space switching systems,' IEEE Commun. Mag. 25, 42-48 (1987).
[Crossref]

IEEE J. Sel. Areas Commun. (2)

B. Mukherjee, 'WDM optical communication networks: progress and challenges,' IEEE J. Sel. Areas Commun. 18, 1810-1824 (2000).
[Crossref]

N. Nagatsu, S. Okamoto, and K. Sato, 'Optical path cross-connect system scale evaluation using path accommodation design for restricted wavelength multiplexing,' IEEE J. Sel. Areas Commun. 14, 893-902 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Uesaka, K. K.-Y. Wong, M. E. Marhic, and L. G. Kazovsky, 'Wavelength exchange in a highly nonlinear dispersion-shifted fiber: theory and experiments,' IEEE J. Sel. Top. Quantum Electron. 8, 560-568 (2002).
[Crossref]

IEEE Trans. Commun. (1)

X. Qin and Y. Yang, 'Nonblocking WDM switching networks with full and limited wavelength conversion,' IEEE Trans. Commun. 50, 2032-2041 (2002).
[Crossref]

IEEE Trans. Comput. (1)

Y. Yang and J. Wang, 'Designing WDM optical interconnects with full connectivity by using limited wavelength conversion,' IEEE Trans. Comput. 53, 1547-1556 (2004).
[Crossref]

IEEE Trans. Parallel Distrib. Syst. (2)

Y. Yang, J. Wang, and C. Qiao, 'Nonblocking WDM multicast switching networks,' IEEE Trans. Parallel Distrib. Syst. 11, 1274-1287 (2000).
[Crossref]

Y. Yang and J. Wang, 'Cost-effective designs of WDM optical interconnects,' IEEE Trans. Parallel Distrib. Syst. 16, 51-66 (2005).
[Crossref]

IEEE/ACM Trans. Netw. (1)

H. Q. Ngo, D. Pan, and C. Qiao, 'Constructions and analyses of nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' IEEE/ACM Trans. Netw. 14, 205-217 (2006).
[Crossref]

J. Lightwave Technol. (7)

C. G. Guillemot, M. Renaud, M. Gambini, P. Janz, C. Andonovic, I. Bauknecht, R. Bostica, B. Burzio, M. Callegati, F. Casoni, M. Chiaroni, D. Clerot, D. Danielson, S. L. Dorgeuille, F. Dupas, A. Franzen, A. Hansen, P. B. Hunter, D. K. Kloch, A. Krahenbuhl, R. Lavigne, B. Le Corre, A. Raffaelli, C. Schilling, M. Simon, J. C. Zucchelli, and L. Lannien, 'Transparent optical packet switching: the European ACTS KEOPS project approach,' J. Lightwave Technol. 16, 2117-2134 (1998).
[Crossref]

L. A. Buckman Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, D. W. Dolfi, 'Parallel-optical interconnects 100 Gb/s,' J. Lightwave Technol. 22, 2055-2063 (2004).
[Crossref]

G. Wilfong, B. Mikkelsen, C. Doerr, and M. Zirngibl, 'WDM cross-connect architectures with reduced complexity,' J. Lightwave Technol. 17, 1732-1741 (1999).
[Crossref]

N. Antoniades, S. J. B. Yoo, K. Bala, G. Ellinas, and T. E. Stern, 'An architecture for a wavelength-interchanging cross-connect utilizing parametric wavelength converters,' J. Lightwave Technol. 17, 1113-1125 (1999).
[Crossref]

G. I. Papadimitriou, C. Papazoglou, and A. S. Pomportsis, 'Optical switching: switch fabrics, techniques, and architectures,' J. Lightwave Technol. 21, 384-405 (2003).
[Crossref]

V. Eramo, M. Listanti, and M. Spaziani, 'Resource sharing in optical packet switches with limited-range wavelength converters,' J. Lightwave Technol. 23, 671-687 (2005).
[Crossref]

H. S. Hamza and J. S. Deogun, 'Wavelength exchanging cross-connect (WEX)--A new class of photonic cross-connects,' J. Lightwave Technol. 24, 1101-1111 (2006).
[Crossref]

J. Opt. Netw. (3)

Opt. Lett. (1)

Proc. IEEE (1)

H. J. Chao, 'Next generation routers,' Proc. IEEE 90, 1518-1558 (2002).
[Crossref]

Other (4)

R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective, 2nd ed. (Academic, 2002).

H. Q. Ngo, D. Pan, and Y. Yang, 'Optical switching networks with minimum number of limited range wavelength converters,' in Proceedings of the 24th Annual Conference on Computer Communications and Networking (INFOCOM 2005) (IEEE, 2005).

H. Q. Ngo, D. Pan, and C. Qiao, 'Nonblocking WDM switches based on arrayed waveguide grating and limited wavelength conversion,' in Proceedings of the 23rd Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 04') (IEEE, 2004), pp. 1352-1362.

H. S. Hamza and J. S. Deogun, 'Designing full-connectivity WDM optical interconnects with reduced switching and conversion complexity,' in Proceedings of the 14th IEEE Hot Interconnects 14, Symposium on High Performance Interconnects (HOTi06) (IEEE, 2006), pp. 25-30.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical design of a 2 λ ( 3 × 3 ) interconnect with FWCs [2, 15].

Fig. 2
Fig. 2

Summary of proposed WDM optical interconnects.

Fig. 3
Fig. 3

WOC in three different configurations. (a) Bar configuration, (b) cross configuration (simultaneous switching and wavelength conversion), and (c) fixed-range conversion configuration.

Fig. 4
Fig. 4

Proposed 2 λ ( 3 × 3 ) crossbar-I switching network.

Fig. 5
Fig. 5

Proposed W λ ( F × F ) crossbar-II switching network.

Fig. 6
Fig. 6

3 λ ( 2 × 2 ) crossbar-II switching network.

Fig. 7
Fig. 7

Generic structure of C ( m , n , r ) three-stage Clos switching network.

Fig. 8
Fig. 8

Generic structure of the three-stage Clos WDM interconnect using (a) wavelength-based method and (b) fiber-based method.

Fig. 9
Fig. 9

Comparison of normalized cost of different proposed three-stage WDM interconnects.

Fig. 10
Fig. 10

Comparison of normalized cost of Clos-I F - II , Clos-I F, and Clos-I W for different values of F and W.

Fig. 11
Fig. 11

Comparison of normalized cost of Clos-I F - II , Clos-I F, and Clos-I W for different values of F and W.

Tables (2)

Tables Icon

Table 1 Quantitative Comparative Analyses of Different WDM Interconnect Designs: Crossbar-like Switching Networks

Tables Icon

Table 2 Quantitative Comparative Analyses of Different WDM Interconnect Designs: Clos-Type Switching Networks

Equations (45)

Equations on this page are rendered with MathJax. Learn more.

Number of SOAs = N F ( W 1 ) .
Number of WOCs = N F ( W 1 ) 2 .
Number of SOAs = N F ( W 1 ) .
Number of WOCs = N ( W 1 ) 2 .
Number of SOAs = 2 N q ( n q 1 ) + F N q ( q W n 1 ) ,
Number of WOCs = N q ( n q 1 ) + F N 2 q ( q W n 1 ) .
n * = 1 2 N ,
q * = 1 2 F .
Number of SOAs = ( 1 + 2 ) N ( N 1 2 F 1 2 ) ,
Number of WOCs = 2 N ( N 1 2 F 1 2 ) .
Number of SOAs = n W N + N F n ,
Number of WOCs = N n ( W 1 ) 2 .
n * = F W .
Number of SOAs = 2 N 3 2 ,
Number of WOCs = 1 2 N 1 2 F ( W 1 ) .
Number of SOAs = 2 N q ( n q 1 ) + F N q ( q . W n 1 ) ,
Number of WOCs = N ( n q 1 ) + N 2 ( q W n 1 ) .
n * = 1 2 N 1 2 ,
q * = 1 2 F 1 2 .
n = 1 2 W 1 2 q .
n * = 1 2 N 1 2 , q * = 1 2 F 1 2 .
n * = 1 2 N 1 2 , q * = F 1 2 .
n * = 1 2 N 1 2 , q * = 1 2 F 1 2 .
n > q 2 , n < q 2 W F .
N 1 2 2 > F 2 , N 1 2 2 < N 2 F .
N 1 2 F 2 < W F , N 1 2 2 > F .
N 1 2 2 > F 1 2 2 , N 1 2 F 2 < W F 2 .
Number of SOAs = ( 2 ) 3 2 N ( N 1 2 F 1 2 ) ,
Number of WOCs = 3 2 N ( W 1 2 1 ) .
Number of SOAs = N ( F ) 1 2 ( 2 3 2 W 1 2 3 ) ,
Number of WOCs = N ( W 1 2 3 2 ) .
Number of SOAs = N ( F ) 1 2 ( 3 W 1 2 2 3 2 ) ,
Number of WOCs = N ( 2 1 2 W 1 2 3 2 ) .
Number of SOAs = 2 N n + F N ( W 1 ) n ,
Number of WOCs = N ( W 1 ) 2 .
Number of SOAs = N n W + F N n ,
Number of WOCs = N ( W 1 ) 2 .
n * = { F ( W 1 ) 2 for Clos - II F - I networks F W for Clos - II F - II networks } .
Number of SOAs = ( 2 F ) 3 2 W W 1 ,
Number of WOCs = N ( W 1 ) 2 .
Number of SOAs = ( 2 F ) 3 2 W W 1 ,
Number of WOCs = N ( W 1 ) 2 .
C N T = C N C sparse = x ̀ + β y ̀ α x + β y .
C Clos - I W T = N W β ( W 1 ) ( 1 + 2 2 ) 2 2 N W β + α ( 2 W 1 ) ,
C Clos - I F T = N ( 4 W β + W 1 ) 4 2 N W β + 2 α ( 2 W 1 ) .