Abstract

Dense wavelength division multiplexing (DWDM) systems are highly attractive in today's communication scenario, since they offer large transmission capacity and also achieve higher spectral efficiency. A scheme to reduce four-wave mixing (FWM) cross talk by using optical spreading code-based channel frequency allocation to a set of unevenly spaced channels is proposed. This assignment scheme provides several advantages over previously proposed schemes. The performance of this scheme for equal and unequal spaced channels of 4- and 16-channel DWDM systems is analyzed for various coding formats, including return to zero, nonreturn to zero, carrier-suppressed return to zero, and vestigial-sideband return to zero. It is observed that unequal channel spacing provides an improvement in the Q factor for all coding formats, and it is also noted that the vestigial-sideband return to zero technique is more tolerant to FWM cross-talk components.

© 2007 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription