Abstract

Feature Issue on Optical Wireless Communications (OWC)

We investigate the design and the accommodation of a quantum communication transceiver in an existing classical optical communication terminal on board a satellite. Operation from a low earth orbit (LEO) platform (e.g., the International Space Station) would allow transmission of single photons and pairs of entangled photons to ground stations and hence permit quantum communication applications such as quantum cryptography on a global scale. Integration of a source generating entangled photon pairs and single-photon detection into existing optical terminal designs is feasible. Even more, major subunits of the classical terminals such as those for pointing, acquisition, and tracking as well as those providing the required electronic, thermal, and structural backbone can be adapted so as to meet the quantum communication terminal needs.

© 2005 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).
  3. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 8420, 4729-4732 (2000).
  4. R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43.1-43.14 (2002).
  5. C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step torwards global key distribution," Nature 419, 450 (2002).
  6. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).
  7. A. Poppe, A. Fedrizzi, T. Lörunser, O. Maurhardt, R. Ursin, H. R. Böhm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger, "Practical quantum key distribution with polarization entangled photons," Opt. Express 12, 3865-3871 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-16-3865.
  8. J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82.1-82.21 (2002).
  9. M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger, "Long-distance quantum communication with entangled photons using satellites," IEEE J. Sel. Topics Quantum Electron. 9, 1541-1551 (2003).
  10. J. E. Nordolt, R. J. Hughes, G. L. Morgan, C. G. Peterson, and C. C. Wipf, "Present and future free-space quantum key distribution," in Free-Space Laser Communication Technologies XIV, Proc. SPIE 4635, 116-126 (2002).
  11. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, "Practical free-space quantum key distribution over 1 km," Phys. Rev. Lett. 81, 3051-3301 (1998).
  12. W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, "Daylight quantum key distribution over 1.6 km," Phys. Rev. Lett. 84, 5652-5655 (2000).
  13. M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement," Science 301, 621-623 (2003).
  14. C.-Z. Peng, T. Yang, X.-H. Bao, J.-Z., X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km" (2004)., http://arxiv.org/abs/quant-ph/0412218.
  15. K. J. Resch, M. Lindenthal, B. Blauensteiner, H. R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger, "Distributing entanglement and single photons through an intra-city, free-space quantum channel," Optics Express 13, 202-209 (2005), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-1-202.
  16. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).
  17. G. C. Baister, Ch. Haupt, E. Fischer, and K. Pribil, "Optical communication crosslink terminals for future broadband satellite applications," in Proceedings of the 18th AIAA International Communication Satellite Systems Conference (April 2000), Vol. 20, p. 1263.
  18. M. Pfennigbauer, W. R. Leeb, G. Neckamm, M. Aspelmeyer, T. Jennewein, F. Tiefenbacher, A. Zeilinger, G. Baister, K. Kudielka, T. Dreischer, and H. Weinfurter, "Accommodation of a quantum communication transceiver in an optical terminal (ACCOM): final report," European Space Agency Contract Report, ESTEC, Contract 17766∕03∕NL∕PM (2005).
  19. Electro Optics Handbook, a compendium of useful information and technical data (Radio Corporation of America, 1968).
  20. For the e−2 beam divergence of a Gaussian beam, θG, one obtains a value of approx 2×0.9λ∕DT from Fig. 9 of Ref. 25. To convert this into the equivalent beam divergence, defined as yielding the same on-axis intensity as a beam with a top-hat profile carrying identical power, one easily finds that a beam with a Gaussian profile and a full e−2 beam divergence θG produces the same on-axis intensity as a beam with top-hat profile and full beam divergence θT=θG∕2. We thus arrive at a beam divergence of θT=(2×0.9∕2)λ∕DT=1.27λ∕DT.
  21. D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Op. Soc. Am. 56, 1372-1379 (1966).
  22. M. Pfennigbauer and W. R. Leeb, "Optical telescopes for intersatellite link--feasibility study," ESTEC, Contract No. 15872∕01 (Subcontract No. ML∕15872∕sub2 with Media Lario S.r.l.), Trade-Off and Goals for Laser Communication Terminal Systems (2002).
  23. L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 1998).
  24. W. Carey, D. Isakeit, M. Heppener, K. Knott, and J. Feustel-Bechl, "The International Space Station European users guide," Tech. Rep., European Space Agency, ISS User Information Centre (MSM-GAU), ESTEC (2001).
  25. B. J. Klein and J. J. Degnan, "Optical antenna gain. 1. Transmitting antennas," Appl. Opt. 13, 2134-2141 (1974).

18th AIAA International Commun. SSC (1)

G. C. Baister, Ch. Haupt, E. Fischer, and K. Pribil, "Optical communication crosslink terminals for future broadband satellite applications," in Proceedings of the 18th AIAA International Communication Satellite Systems Conference (April 2000), Vol. 20, p. 1263.

Appl. Opt. (1)

ESTEC (1)

M. Pfennigbauer and W. R. Leeb, "Optical telescopes for intersatellite link--feasibility study," ESTEC, Contract No. 15872∕01 (Subcontract No. ML∕15872∕sub2 with Media Lario S.r.l.), Trade-Off and Goals for Laser Communication Terminal Systems (2002).

European Space Agency Contract Report (1)

M. Pfennigbauer, W. R. Leeb, G. Neckamm, M. Aspelmeyer, T. Jennewein, F. Tiefenbacher, A. Zeilinger, G. Baister, K. Kudielka, T. Dreischer, and H. Weinfurter, "Accommodation of a quantum communication transceiver in an optical terminal (ACCOM): final report," European Space Agency Contract Report, ESTEC, Contract 17766∕03∕NL∕PM (2005).

IEEE J. Sel. Topics Quantum Electron. (1)

M. Aspelmeyer, T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A. Zeilinger, "Long-distance quantum communication with entangled photons using satellites," IEEE J. Sel. Topics Quantum Electron. 9, 1541-1551 (2003).

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, "Experimental quantum cryptography," J. Cryptology 5, 3-28 (1992).

J. Op. Soc. Am. (1)

D. L. Fried, "Optical resolution through a randomly inhomogeneous medium for very long and very short exposures," J. Op. Soc. Am. 56, 1372-1379 (1966).

Nature (1)

C. Kurtsiefer, P. Zarda, M. Halder, H. Weinfurter, P. M. Gorman, P. R. Tapster, and J. G. Rarity, "A step torwards global key distribution," Nature 419, 450 (2002).

New J. Phys. (3)

D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4, 41.1-41.8 (2002).

R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson, "Practical free-space quantum key distribution over 10 km in daylight and at night," New J. Phys. 4, 43.1-43.14 (2002).

J. G. Rarity, P. R. Tapster, P. M. Gorman, and P. Knight, "Ground to satellite secure key exchange using quantum cryptography," New J. Phys. 4, 82.1-82.21 (2002).

Opt. Express (2)

Phys. Rev. Lett. (4)

T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, "Quantum cryptography with entangled photons," Phys. Rev. Lett. 8420, 4729-4732 (2000).

W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson, and C. M. Simmons, "Practical free-space quantum key distribution over 1 km," Phys. Rev. Lett. 81, 3051-3301 (1998).

W. T. Buttler, R. J. Hughes, S. K. Lamoreaux, G. L. Morgan, J. E. Nordholt, and C. G. Peterson, "Daylight quantum key distribution over 1.6 km," Phys. Rev. Lett. 84, 5652-5655 (2000).

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. Sergienko, and Y. Shih, "New high-intensity source of polarization-entangled photon pairs," Phys. Rev. Lett. 75, 4337-4341 (1995).

Proc. SPIE (1)

J. E. Nordolt, R. J. Hughes, G. L. Morgan, C. G. Peterson, and C. C. Wipf, "Present and future free-space quantum key distribution," in Free-Space Laser Communication Technologies XIV, Proc. SPIE 4635, 116-126 (2002).

Science (1)

M. Aspelmeyer, H. R. Böhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther, and A. Zeilinger, "Long-distance free-space distribution of quantum entanglement," Science 301, 621-623 (2003).

Other (6)

C.-Z. Peng, T. Yang, X.-H. Bao, J.-Z., X.-M. Jin, F.-Y. Feng, B. Yang, J. Yang, J. Yin, Q. Zhang, N. Li, B.-L. Tian, and J.-W. Pan, "Experimental free-space distribution of entangled photon pairs over a noisy ground atmosphere of 13 km" (2004)., http://arxiv.org/abs/quant-ph/0412218.

Electro Optics Handbook, a compendium of useful information and technical data (Radio Corporation of America, 1968).

For the e−2 beam divergence of a Gaussian beam, θG, one obtains a value of approx 2×0.9λ∕DT from Fig. 9 of Ref. 25. To convert this into the equivalent beam divergence, defined as yielding the same on-axis intensity as a beam with a top-hat profile carrying identical power, one easily finds that a beam with a Gaussian profile and a full e−2 beam divergence θG produces the same on-axis intensity as a beam with top-hat profile and full beam divergence θT=θG∕2. We thus arrive at a beam divergence of θT=(2×0.9∕2)λ∕DT=1.27λ∕DT.

D. Bouwmeester, A. Ekert, and A. Zeilinger, eds., The Physics of Quantum Information (Springer-Verlag, Berlin, 2000).

L. C. Andrews and R. L. Phillips, Laser Beam Propagation Through Random Media (SPIE, 1998).

W. Carey, D. Isakeit, M. Heppener, K. Knott, and J. Feustel-Bechl, "The International Space Station European users guide," Tech. Rep., European Space Agency, ISS User Information Centre (MSM-GAU), ESTEC (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.