Abstract

<p><a href="http://www.osa-jon.org/features/OIN_2004.html">Feature Issue on Optical Interconnection Networks (OIN)</a></p> Two-dimensional (2-D) microelectromechanical system (MEMS) optical switches have the merits of easy fabrication and high reliability. Since the optical signal loss is mainly proportional to the length of signaling paths in the switches, current 2-D MEMS optical switches that use a crossbar structure have a rather limited number of ports. For larger 2-D MEMS optical switches, we may use nonrectangular topology switching fabrics to shorten the internal signaling path or to recollimate the optical signal segment by segment inside the switches. We discuss these approaches from the aspect of implementation and routing control complexity.

© 2004 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. A. Banerjee, L. Drake, L. Lang, B. Turner, D. Awduche, L. Berger, K. Kompella, and Y. Rekhter, "Generalized multiprotocol label switching: an overview of signaling enhancements and recovery techniques," IEEE Commun. Mag. 39, 144-151 (2001).
  2. See<a href="http://david.com.dtu.dk/">http://david.com.dtu.dk/</a>.
  3. C. Qiao and M. Yoo, "Optical burst switching (OBS)--a new paradigm for an optical Internet," J. High Speed Netw. 8, 69-84 (1999).
  4. A. Neukermans and R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag. 39, 62-69 (2001).
  5. L. Y. Lin and E. L. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," J. Sel. Top. Quantum Electron. 8, 163-172 (2002).
  6. X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).
  7. P. De Dobbelaere, K. Falta, and S. Globeckner, "Advances in integrated 2D MEMS-based solutions for optical network applications," IEEE Commun. Mag. 41, S16-S23, (2003).
  8. L.Y. Lin, E.L. Goldstein, and R.W. Tkach, "On the expandability of free-space micromachined optical cross connects," J. Lightwave Technol. 18, 482-489 (2000).
  9. R. Ryf, D. T. Neilson, and C. R. Giles, "Scalable micro mechanical optical crossconnects," in Micro- and Nano-optics for Optical Interconnection and Information Processing, M. R. Taghizadeh and H. Thienpont, eds., Proc. SPIE 4455, 51-58 (2001).
  10. B. Blau and K. Loesch, "The scalability of photonic switches," Comput. Rendus Phys. 4, 75-83 (2003).
  11. G. X. ShenT. H. Cheng, S. K. Bose, L. Chao, and Y. C. Teck "Architectural design for multistage 2-D MEMS optical switches," J. Lightwave Technol. 20, 178-187 (2002).
  12. J. M. Simmons, A. A. M. Saleh, E. L. Goldstein, and L. Y. Lin, "Optical crossconnects of reduced complexity for WDM networks with bidirectional symmetry," IEEE Photon. Technol. Lett. 10, 819-921 (1998).
  13. L. Y. Lin, E. L. Goldstein, J. M. Simmons, and R. W. Tkach, "High-density micromachined Polygon optical crossconnects exploiting network connect-symmetry," IEEE Photon. Technol. Lett. 10, 1425-1427 (1998).
  14. T. W. Yeow, K. L. E. Law, and A. A. Goldenberg, "SOI-based 2-D MEMS L-switching matrix for optical networking," J. Sel. Top. Quantum Electron. 9, 603-613 (2003).
  15. G .X. Shen, T. H. Cheng, C. Lu, T. Y. Chai, and S. K. Bose, "A novel rearrangeable non-blocking architecture for 2D MEMS optical space switches," Opt. Netw. Mag. 3, 70-78 (2002).
  16. T. Y. Chai, T. H. Cheng, S. K. Bose, C. Lu, and G. X. Shen, "Array interconnection for rearrangeable 2-D MEMS optical switch," J. Lightwave Technol. 21, 1134-1140 (2003).
  17. S. Gloeckner, A. Husain, and L. Fan, "Optomechanical matrix switches including collimator arrays," WIPO patent 0073842 (7 December 2000).
  18. C. Y. Li, G. M. Li, V. O. K. Li, P. K. A. Wai, H. Xie, and X. C. Yuan, "Using 2×2 switching modules to build large 2-D MEMS optical switches," in Proceedings of IEEE Global Telecommunications Conference (IEEE, New York, 2003), pp. 2789-2802.
  19. D. Dragoman and M. Dragoman, "Micro/nano-optoelectromechanical systems," Prog. Quantum Electron. 29, 229-250 (2001).
  20. R. A. Spanke, "Architectures for guided-wave optical space switching systems," IEEE Commun. Mag. 25, 42-48 (1987).
  21. R.A. Spanke and V.E. Beneš, "N-stage planar optical permutation network," Appl. Opt. 26, 1226-1229 (1987).
  22. V.E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).
  23. B. E. A. Saleh and M.C. Teich, Fundamentals of Photonics (Wiley New York, 1991).
  24. N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).
  25. S. P. Han, J. T. Kim, S. W. Jung, S. H. Ahn, C. G. Choi, and M. Y. Jeong, "A reflective curved mirror with low coupling loss for optical interconnection," IEEE Photon. Technol. Lett. 16, 185-187 (2004).

Appl. Opt. (1)

Comput. Rendus Phys. (1)

B. Blau and K. Loesch, "The scalability of photonic switches," Comput. Rendus Phys. 4, 75-83 (2003).

IEEE Commun. Mag. (5)

A. Banerjee, L. Drake, L. Lang, B. Turner, D. Awduche, L. Berger, K. Kompella, and Y. Rekhter, "Generalized multiprotocol label switching: an overview of signaling enhancements and recovery techniques," IEEE Commun. Mag. 39, 144-151 (2001).

A. Neukermans and R. Ramaswami, "MEMS technology for optical networking applications," IEEE Commun. Mag. 39, 62-69 (2001).

X. H. Ma and G. S. Kuo, "Optical switching technology comparison: optical MEMS vs. other technologies," IEEE Commun. Mag. 41, S16-S23 (2003).

P. De Dobbelaere, K. Falta, and S. Globeckner, "Advances in integrated 2D MEMS-based solutions for optical network applications," IEEE Commun. Mag. 41, S16-S23, (2003).

R. A. Spanke, "Architectures for guided-wave optical space switching systems," IEEE Commun. Mag. 25, 42-48 (1987).

IEEE Global Telecommun. Conf. 2003 (1)

C. Y. Li, G. M. Li, V. O. K. Li, P. K. A. Wai, H. Xie, and X. C. Yuan, "Using 2×2 switching modules to build large 2-D MEMS optical switches," in Proceedings of IEEE Global Telecommunications Conference (IEEE, New York, 2003), pp. 2789-2802.

IEEE Photon. Technol. Lett. (3)

S. P. Han, J. T. Kim, S. W. Jung, S. H. Ahn, C. G. Choi, and M. Y. Jeong, "A reflective curved mirror with low coupling loss for optical interconnection," IEEE Photon. Technol. Lett. 16, 185-187 (2004).

J. M. Simmons, A. A. M. Saleh, E. L. Goldstein, and L. Y. Lin, "Optical crossconnects of reduced complexity for WDM networks with bidirectional symmetry," IEEE Photon. Technol. Lett. 10, 819-921 (1998).

L. Y. Lin, E. L. Goldstein, J. M. Simmons, and R. W. Tkach, "High-density micromachined Polygon optical crossconnects exploiting network connect-symmetry," IEEE Photon. Technol. Lett. 10, 1425-1427 (1998).

J. High Speed Netw. (1)

C. Qiao and M. Yoo, "Optical burst switching (OBS)--a new paradigm for an optical Internet," J. High Speed Netw. 8, 69-84 (1999).

J. Lightwave Technol. (3)

J. Opt. A: Pure Appl. Opt. (1)

N. Lindlein, "Simulation of micro-optical systems including microlens arrays," J. Opt. A: Pure Appl. Opt. 4, S1-S9 (2002).

J. Sel. Top. Quantum Electron. (2)

L. Y. Lin and E. L. Goldstein, "Opportunities and challenges for MEMS in lightwave communications," J. Sel. Top. Quantum Electron. 8, 163-172 (2002).

T. W. Yeow, K. L. E. Law, and A. A. Goldenberg, "SOI-based 2-D MEMS L-switching matrix for optical networking," J. Sel. Top. Quantum Electron. 9, 603-613 (2003).

Opt. Netw. Mag. (1)

G .X. Shen, T. H. Cheng, C. Lu, T. Y. Chai, and S. K. Bose, "A novel rearrangeable non-blocking architecture for 2D MEMS optical space switches," Opt. Netw. Mag. 3, 70-78 (2002).

Proc. SPIE (1)

R. Ryf, D. T. Neilson, and C. R. Giles, "Scalable micro mechanical optical crossconnects," in Micro- and Nano-optics for Optical Interconnection and Information Processing, M. R. Taghizadeh and H. Thienpont, eds., Proc. SPIE 4455, 51-58 (2001).

Prog. Quantum Electron. (1)

D. Dragoman and M. Dragoman, "Micro/nano-optoelectromechanical systems," Prog. Quantum Electron. 29, 229-250 (2001).

WIPO patent 0073842 (7 December 2000) (1)

S. Gloeckner, A. Husain, and L. Fan, "Optomechanical matrix switches including collimator arrays," WIPO patent 0073842 (7 December 2000).

Other (3)

See<a href="http://david.com.dtu.dk/">http://david.com.dtu.dk/</a>.

V.E. Beneš, Mathematical Theory of Connecting Networks and Telephone Traffic (Academic, New York, 1965).

B. E. A. Saleh and M.C. Teich, Fundamentals of Photonics (Wiley New York, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.