Abstract

Next-generation switches and routers may rely on optical switch fabrics to overcome cost, power, space, and scalability problems that arise in sizing traditional electrical backplanes into the terabit regime. However, several technological and architectural problems must be overcome to be able to use such an approach. The reconfiguration times of optical packet fabrics are longer than those of electronic fabrics. Even though we can relax some of the constraints in switching speed by using appropriate packetization and scheduling mechanisms, we need to adapt optical technology to the needs of packet switching. We present an optical packet fabric design, based on arrayed waveguide gratings and fast wavelength tuning, and present methods for solving the technical problems of fast switching.

© 2003 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. K. Kar, T. Lakshman, D. Stiliadis, and L. Tassiulas, “Reduced complexity input buffered switches,” in Hot Interconnects VIII (Institute of Electrical and Electronics Engineers, New York, 2000), paper 1.3.
  2. T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed switch scheduling for local area networks,” ACM Trans. Comput. Syst. 11, 319–52 (1993).
  3. N. McKeown, V. Anantharam, and J.Walrand, “Achieving 100% throughput in an input-queued switch,” in Proceedings of IEEE INFOCOM 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 296–302.
  4. N. McKeown and T. Anderson, “A quantitative comparison of scheduling algorithms for inputqueued switches,” Comp. Netw. ISDN Syst. 30, 2309–2326 (1998).
  5. S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queueing with a combined input output queued switch,” IEEE J. Sel. Areas Commun. 17, 1030–1039 (1999).
  6. M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Input-queued router architectures exploiting cell-based switching fabrics,” Comput. Netw. 37, 541–559 (2001).
  7. D. Stephens and H. Zhang, “A distributed scheduling algorithm in high-speed input queued crossbars,” in Proceedings of IEEE INFOCOM 1998 (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 282–290.
  8. J. G. Dai and B. Prabhakar, “The Throughput of Data Switches with and without Speedup,” in Proceedings of IEEE INFOCOM 2000 (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 1184–1192.
  9. K. Kar, T. Lakshman, D. Stiliadis, and L. Tassiulas, “Scheduling algorithms for optical packet fabrics,” IEEE J. Sel. Areas Commun. (June, 2003).
  10. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982).
  11. R. Ryf, J. Kim, J. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. Shea, A. Gasparyan, V. Muratov, and J. Griffith, “1296-port MEMS transparent optical crossconnect with 2.07 Petabit/s switch capacity,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper, PD28.
  12. A. Neukermans and R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag. 39, 62–69 (2001).
  13. J. E. Fouquet, “Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,” in Optical Fiber Communication Conference (OFC 2000), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuM1-1.
  14. T. Goh, M. Yasu, K. Hattori, A. Himeno, M. Okuno, and Y. Ohmori, “Low loss and high extinction ratio strictly nonblocking 16×16 thermooptic matrix switch on 6-in wafer using silicabased planar lightwave circuit technology,” J. Lightwave Technol. 19, 371–379 (2001).
  15. D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” IEEE Commun. Mag. 40, 75–79 (2002).
  16. P. Granestrand, B. Lagerström, P. Svensson, H. Olofsson, J. Falk, and B. Stoltz, “Pigtailed treestructured 8×8 LiNbO3 switch matrix with 112 digital optical switches,” IEEE Photon. Technol. Lett. 6, 71–73 (1994).
  17. H. Okayama and M. Kawahara, “Prototype 32×32 optical switch matrix,” Electron. Lett. 30, 1128–1129 (1994).
  18. K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).
  19. J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato, and M. Itoh, “Hybrid integrated 4×4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit,” Electron. Lett. 34, 986–987 (1998).
  20. N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommereau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, “A highly integrated 32-SOA gates optoelectronic module suitable for IP multiterabit optical packet routers,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD32.
  21. D. Chiaroni, P. Bonno, O. Rofidal, J. Jacquinot, P. Poignant, C. Coeurjoly, F. Fernandez, E. Mestre, J. Moncelet, A. Noury, A. Jourdan, T. Zami, A. Dupas, M. Renaud, N. Sahri, D. Keller, S. Silvestre, G. Eilenberger, S. Bunse, W. Lautenschlaeger, and F. Masetti, “First demonstration of an asynchronous optical packet switching matrix prototype for MultiTerabitclass routers/switches,” in 27th European Conference on Optical Communications 2001 (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), postdeadline paper ThA4.11.
  22. E. Shekel, A. Feingold, Z. Fradkin, A. Geron, J. Levy, G. Matmon, D. Majer, E. Rafaely, M. Rudman, G. Tidhar, J. Vecht, and S. Ruschin, “64×64 fast optical switching module,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuF3.
  23. M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).
  24. C. Dragone, “An N ×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).
  25. P. Bernasconi, C. Doerr, C. Dragone, M. Cappuzzo, E. Laskowski, and A. Paunescu, “Large N ×N waveguide grating routers,” J. Lightwave Technol. 18, 985–991 (2000).
  26. K. Okamoto, K. Syuto, H. Takahashi, and Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25 GHz channel spacing,” Electron. Lett. 32, 1474–1476 (1996).
  27. M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).
  28. F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).
  29. V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).
  30. R. C. Alferness, T. L. Koch, L. L. Buhl, F. Storz, F. Heismann, and M. J. R. Martyak, “Grating-assisted InGaAsP/InP vertical codirectional coupler filter,” Appl. Phys. Lett. 55, 2011–2013 (1989).
  31. G. Busico, N. D. Whitbread, P. J. Williams, D. J. Robbins, A. J. Ward, and D. C. J. Reid, “A widely tunable digital supermode DBR laser with high SMSR,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.2.
  32. J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, and M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1805–1807 (1992).
  33. D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett. 15, 182–184 (2003).
  34. M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zirngibl, “16-channel digitally tunable packet switching transmitter with sub-nanosecond switching time,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.3.
  35. J. Simsarian, A. Bhardwaj, K. Dreyer, J. Gripp, O. Laznicka, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “A widely tunable laser transmitter with fast, accurate switching between all channel combinations,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.6.
  36. A. Bhardwaj, J. Gripp, J. Simsarian, and M. Zirngibl, “Long-term wavelength switching measurements with random schedules on fast tunable lasers,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 11.5.3.
  37. M. Reinhold, C. Dorschky, E. Rose, R. Pullela, P. Mayer, F. Kunz, Y. Baeyens, T. Link, and J.-P. Mattia, “A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology,” IEEE J. Solid-State Circuits 36, 1937–1945 (2001).
  38. J. Gripp, M. Duelk, J. Simsarian, P. Bernasconi, A. Bhardwaj, K. Sherman, K. Dreyer, M. Zirngibl, and O. Laznicka, “4 x 4 demonstration of a 1.2 Tb/s (32 x 40 Gb/s) optical switch fabric for multi-Tb/s packet routers,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), postdeadline paper PD2.4.

ACM Trans. Comput. Syst.

T. E. Anderson, S. S. Owicki, J. B. Saxe, and C. P. Thacker, “High speed switch scheduling for local area networks,” ACM Trans. Comput. Syst. 11, 319–52 (1993).

Appl. Phys. Lett.

F. P. Schäfer, W. Schmidt, and J. Volze, “Organic dye solution laser,” Appl. Phys. Lett. 9, 306–309 (1966).

R. C. Alferness, T. L. Koch, L. L. Buhl, F. Storz, F. Heismann, and M. J. R. Martyak, “Grating-assisted InGaAsP/InP vertical codirectional coupler filter,” Appl. Phys. Lett. 55, 2011–2013 (1989).

Comp. Netw. ISDN Syst.

N. McKeown and T. Anderson, “A quantitative comparison of scheduling algorithms for inputqueued switches,” Comp. Netw. ISDN Syst. 30, 2309–2326 (1998).

Comput. Netw.

M. Marsan, A. Bianco, P. Giaccone, E. Leonardi, and F. Neri, “Input-queued router architectures exploiting cell-based switching fabrics,” Comput. Netw. 37, 541–559 (2001).

Electron. Lett.

H. Okayama and M. Kawahara, “Prototype 32×32 optical switch matrix,” Electron. Lett. 30, 1128–1129 (1994).

K. Hamamoto, T. Anan, K. Komatsu, M. Sugimoto, and I. Mito, “First 8×8 semiconductor optical matrix switches using GaAs/AlGaAs electro-optic guided-wave directional couplers,” Electron. Lett. 28, 441–443 (1992).

J. Sasaki, H. Hatakeyama, T. Tamanuki, S. Kitamura, M. Yamaguchi, N. Kitamura, T. Shimoda, M. Kitamura, T. Kato, and M. Itoh, “Hybrid integrated 4×4 optical matrix switch using self-aligned semiconductor optical amplifier gate arrays and silica planar lightwave circuit,” Electron. Lett. 34, 986–987 (1998).

J. B. D. Soole, K. Poguntke, A. Scherer, H. P. LeBlanc, C. Chang-Hasnain, J. R. Hayes, C. Caneau, R. Bhat, and M. A. Koza, “Multistripe array grating integrated cavity (MAGIC) laser: a new semiconductor laser for WDM applications,” Electron. Lett. 28, 1805–1807 (1992).

K. Okamoto, K. Syuto, H. Takahashi, and Y. Ohmori, “Fabrication of 128-channel arrayed-waveguide grating multiplexer with 25 GHz channel spacing,” Electron. Lett. 32, 1474–1476 (1996).

M. K. Smit, “New focusing and dispersive planar component based on an optical phased array,” Electron. Lett. 24, 385–386 (1988).

IEEE J. Quantum Electron.

V. Jayaraman, Z. M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron. 29, 1824–1834 (1993).

IEEE J. Sel. Areas Commun.

S.-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching output queueing with a combined input output queued switch,” IEEE J. Sel. Areas Commun. 17, 1030–1039 (1999).

K. Kar, T. Lakshman, D. Stiliadis, and L. Tassiulas, “Scheduling algorithms for optical packet fabrics,” IEEE J. Sel. Areas Commun. (June, 2003).

IEEE J. Sel. Top. Quantum Electron.

M. K. Smit and C. Van Dam, “PHASAR-based WDM-devices: Principles, design and applications,” IEEE J. Sel. Top. Quantum Electron. 2, 236–250 (1996).

IEEE J. Solid-State Circuits

M. Reinhold, C. Dorschky, E. Rose, R. Pullela, P. Mayer, F. Kunz, Y. Baeyens, T. Link, and J.-P. Mattia, “A fully integrated 40-Gb/s clock and data recovery IC with 1:4 DEMUX in SiGe technology,” IEEE J. Solid-State Circuits 36, 1937–1945 (2001).

IEEE Photon. Technol. Lett.

D. Van Thourhout, L. Zhang, W. Yang, B. I. Miller, N. J. Sauer, and C. R. Doerr, “Compact digitally tunable laser,” IEEE Photon. Technol. Lett. 15, 182–184 (2003).

C. Dragone, “An N ×N optical multiplexer using a planar arrangement of two star couplers,” IEEE Photon. Technol. Lett. 3, 812–815 (1991).

P. Granestrand, B. Lagerström, P. Svensson, H. Olofsson, J. Falk, and B. Stoltz, “Pigtailed treestructured 8×8 LiNbO3 switch matrix with 112 digital optical switches,” IEEE Photon. Technol. Lett. 6, 71–73 (1994).

J. Lightwave Technol.

Proc. IEEE

K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982).

Other

R. Ryf, J. Kim, J. Hickey, A. Gnauck, D. Carr, F. Pardo, C. Bolle, R. Frahm, N. Basavanhally, C. Yoh, D. Ramsey, R. Boie, R. George, J. Kraus, C. Lichtenwalner, R. Papazian, J. Gates, H. Shea, A. Gasparyan, V. Muratov, and J. Griffith, “1296-port MEMS transparent optical crossconnect with 2.07 Petabit/s switch capacity,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper, PD28.

A. Neukermans and R. Ramaswami, “MEMS technology for optical networking applications,” IEEE Commun. Mag. 39, 62–69 (2001).

J. E. Fouquet, “Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar lightwave circuit,” in Optical Fiber Communication Conference (OFC 2000), Vol. 37 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2000), paper TuM1-1.

N. McKeown, V. Anantharam, and J.Walrand, “Achieving 100% throughput in an input-queued switch,” in Proceedings of IEEE INFOCOM 1996 (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 296–302.

D. J. Bishop, C. R. Giles, and G. P. Austin, “The Lucent LambdaRouter: MEMS technology of the future here today,” IEEE Commun. Mag. 40, 75–79 (2002).

D. Stephens and H. Zhang, “A distributed scheduling algorithm in high-speed input queued crossbars,” in Proceedings of IEEE INFOCOM 1998 (Institute of Electrical and Electronics Engineers, New York, 1998), pp. 282–290.

J. G. Dai and B. Prabhakar, “The Throughput of Data Switches with and without Speedup,” in Proceedings of IEEE INFOCOM 2000 (Institute of Electrical and Electronics Engineers, New York, 2000), pp. 1184–1192.

N. Sahri, D. Prieto, S. Silvestre, D. Keller, F. Pommereau, M. Renaud, O. Rofidal, A. Dupas, F. Dorgeuille, and D. Chiaroni, “A highly integrated 32-SOA gates optoelectronic module suitable for IP multiterabit optical packet routers,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2001), postdeadline paper PD32.

D. Chiaroni, P. Bonno, O. Rofidal, J. Jacquinot, P. Poignant, C. Coeurjoly, F. Fernandez, E. Mestre, J. Moncelet, A. Noury, A. Jourdan, T. Zami, A. Dupas, M. Renaud, N. Sahri, D. Keller, S. Silvestre, G. Eilenberger, S. Bunse, W. Lautenschlaeger, and F. Masetti, “First demonstration of an asynchronous optical packet switching matrix prototype for MultiTerabitclass routers/switches,” in 27th European Conference on Optical Communications 2001 (ECOC 2001) (Institute of Electrical and Electronics Engineers, New York, 2001), postdeadline paper ThA4.11.

E. Shekel, A. Feingold, Z. Fradkin, A. Geron, J. Levy, G. Matmon, D. Majer, E. Rafaely, M. Rudman, G. Tidhar, J. Vecht, and S. Ruschin, “64×64 fast optical switching module,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), paper TuF3.

K. Kar, T. Lakshman, D. Stiliadis, and L. Tassiulas, “Reduced complexity input buffered switches,” in Hot Interconnects VIII (Institute of Electrical and Electronics Engineers, New York, 2000), paper 1.3.

M. Kauer, M. Girault, J. Leuthold, J. Honthaas, O. Pellegri, C. Goullancourt, and M. Zirngibl, “16-channel digitally tunable packet switching transmitter with sub-nanosecond switching time,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.3.

J. Simsarian, A. Bhardwaj, K. Dreyer, J. Gripp, O. Laznicka, K. Sherman, Y. Su, C. Webb, L. Zhang, and M. Zirngibl, “A widely tunable laser transmitter with fast, accurate switching between all channel combinations,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.6.

A. Bhardwaj, J. Gripp, J. Simsarian, and M. Zirngibl, “Long-term wavelength switching measurements with random schedules on fast tunable lasers,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 11.5.3.

J. Gripp, M. Duelk, J. Simsarian, P. Bernasconi, A. Bhardwaj, K. Sherman, K. Dreyer, M. Zirngibl, and O. Laznicka, “4 x 4 demonstration of a 1.2 Tb/s (32 x 40 Gb/s) optical switch fabric for multi-Tb/s packet routers,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), postdeadline paper PD2.4.

G. Busico, N. D. Whitbread, P. J. Williams, D. J. Robbins, A. J. Ward, and D. C. J. Reid, “A widely tunable digital supermode DBR laser with high SMSR,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), paper 3.3.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.