Abstract

We propose a 2R regeneration scheme based on a nonlinear optical loop mirror and optical filtering. The feasibility of wavelength-division multiplexing operation at 40 Gbit/s is numerically demonstrated. We examine the characteristics of one-step regeneration and discuss networking applications.

© 2002 Optical Society of America

PDF Article

References

  • View by:
  • |

  1. M. F. C. Stephens, R. V. Penty, and I. H. White, “All-optical regeneration and wavelength conversion in an integrated semiconductor optical amplifier/distributed-feedback laser,” IEEE Photon. Technol. Lett. 11, 979–981 (1999).
  2. J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach–Zehnder interferometer incorporating MMI-SOA,” Electron. Lett. 38, 238–239 (2002).
  3. D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40 Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 12, 332–334 (2000).
  4. J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (<1dB) for optical networking applications,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America,Washington, D.C., 2001), MB4.
  5. M. Zhao, G. Morthier, and R. Baets, “Quasi-ideal optical decision characteristic from a Mach–Zehnder interferometer with gain-clamped semiconductor optical amplifiers,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), ThGG94, pp. 745–746.
  6. N. Chi, L. Xu, L. Oxenløwe, T. Tokle, and P. Jeppesen, “2R regenerator based on high non-linear dispersion-imbalanced loop mirror,” Opt. Commun. 206, 295–300 (2002).
  7. N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 1581–1583 (2002).
  8. N. J. Smith and N. J. Doran, “Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters,” J. Opt. Soc. Am. B 12, 1117–1125 (1995).
  9. S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive 2R regeneration for N×40Gbit/s WDM transmission using NOLM and novel filtering technique,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), P3.12.
  10. Y. Liang, J. W. Lou, J. C. Stocker, O. Boyraz, J. K. Andersen, and M. N. Islam, “Polarization insensitive nonlinear optical loop mirror demultiplexer using twisted fiber,” in Optical Fiber Communication Conference (OFC’99) (Optical Society of America, Washington, D.C., 1999), THA31-3.
  11. I. Shake, H. Takara, K. Uchiyama, S. Kawanishi, and Y. Yamabayashi, “Vibration-insensitive nonlinear optical loop mirror utilizing reflective scheme,” IEEE Photon. Technol. Lett. 12, 555–557 (2000).

Electron. Lett. (1)

J. De Merlier, G. Morthier, P. Van Daele, I. Moerman, and R. Baets, “All-optical 2R regeneration based on integrated asymmetric Mach–Zehnder interferometer incorporating MMI-SOA,” Electron. Lett. 38, 238–239 (2002).

IEEE Photon. Technol. Lett. (4)

D. Wolfson, A. Kloch, T. Fjelde, C. Janz, B. Dagens, and M. Renaud, “40 Gb/s all-optical wavelength conversion, regeneration, and demultiplexing in an SOA-based all-active Mach–Zehnder interferometer,” IEEE Photon. Technol. Lett. 12, 332–334 (2000).

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, “All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror,” IEEE Photon. Technol. Lett. 14, 1581–1583 (2002).

M. F. C. Stephens, R. V. Penty, and I. H. White, “All-optical regeneration and wavelength conversion in an integrated semiconductor optical amplifier/distributed-feedback laser,” IEEE Photon. Technol. Lett. 11, 979–981 (1999).

I. Shake, H. Takara, K. Uchiyama, S. Kawanishi, and Y. Yamabayashi, “Vibration-insensitive nonlinear optical loop mirror utilizing reflective scheme,” IEEE Photon. Technol. Lett. 12, 555–557 (2000).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

N. Chi, L. Xu, L. Oxenløwe, T. Tokle, and P. Jeppesen, “2R regenerator based on high non-linear dispersion-imbalanced loop mirror,” Opt. Commun. 206, 295–300 (2002).

Other (4)

S. Boscolo, S. K. Turitsyn, and K. J. Blow, “All-optical passive 2R regeneration for N×40Gbit/s WDM transmission using NOLM and novel filtering technique,” in 28th European Conference on Optical Communications 2002 (ECOC 2002) (Institute of Electrical and Electronics Engineers, New York, 2002), P3.12.

Y. Liang, J. W. Lou, J. C. Stocker, O. Boyraz, J. K. Andersen, and M. N. Islam, “Polarization insensitive nonlinear optical loop mirror demultiplexer using twisted fiber,” in Optical Fiber Communication Conference (OFC’99) (Optical Society of America, Washington, D.C., 1999), THA31-3.

J.-Y. Emery, M. Picq, F. Poingt, F. Gaborit, R. Brenot, M. Renaud, B. Lavigne, and A. Dupas, “Optimised 2-R all-optical regenerator with low polarisation sensitivity penalty (<1dB) for optical networking applications,” in Optical Fiber Communication Conference (OFC 2001), Vol. 54 of OSA Trends in Optics and Photonics Series (Optical Society of America,Washington, D.C., 2001), MB4.

M. Zhao, G. Morthier, and R. Baets, “Quasi-ideal optical decision characteristic from a Mach–Zehnder interferometer with gain-clamped semiconductor optical amplifiers,” in Optical Fiber Communication Conference (OFC 2002), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), ThGG94, pp. 745–746.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.