Abstract

We evaluate the bit-error-rate (BER) performance of a multihop optical ShuffleNet with and without convolutional coding. Computed results show that there is considerable improvement in network performance resulting from coding in terms of an increased number of traversable hops from a given transmitter power at a given BER. For a rate-1/2 convolutional code with constraint length <i>K</i> = 9 at BER = 10<sup>-9</sup>, the hop gains are found to be 20 hops for hot-potato routing and 7 hops for single-buffer routing at the transmitter power of 0 dBm. We can further increase the hop gain by increasing transmitter power.

© Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription